On Fourier coefficients of Siegel modular forms of degree two with respect to congruence subgroups

被引:3
作者
Chida, Masataka [1 ]
Katsurada, Hidenori [2 ]
Matsumoto, Kohji [3 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto 6068502, Japan
[2] Muroran Inst Technol, Muroran, Hokkaido 0508585, Japan
[3] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2014年 / 84卷 / 01期
关键词
Siegel modular form; Fourier coefficients; Petersson formula; AUTOMORPHIC L-FUNCTIONS;
D O I
10.1007/s12188-013-0087-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a formula of Petersson's type for Fourier coefficients of Siegel cusp forms of degree 2 with respect to congruence subgroups, and as a corollary, show upper bound estimates of individual Fourier coefficients. The method in this paper is essentially a generalization of Kitaoka's previous work which studied the full modular case, but some modification is necessary to obtain estimates which are sharp with respect to the level aspect.
引用
收藏
页码:31 / 47
页数:17
相关论文
共 8 条
[1]   UBER HILBERT-SIEGELSCHE MODULFORMEN UND POINCARESCHE REIHEN [J].
CHRISTIAN, U .
MATHEMATISCHE ANNALEN, 1962, 148 (04) :257-307
[2]   THE CRITICAL ORDER OF VANISHING OF AUTOMORPHIC L-FUNCTIONS WITH LARGE LEVEL [J].
DUKE, W .
INVENTIONES MATHEMATICAE, 1995, 119 (01) :165-174
[3]  
Hua L. K., 1982, INTRO NUMBER THEORY
[4]  
Iwaniec H., 1997, Topics in classical automorphic forms, DOI DOI 10.1090/GSM/017
[5]   Certain mean values and non-vanishing of automorphic L-functions with large level [J].
Kamiya, Y .
ACTA ARITHMETICA, 2000, 93 (02) :157-176
[6]   FOURIER COEFFICIENTS OF SIEGEL CUSP FORMS OF DEGREE-2 [J].
KITAOKA, Y .
NAGOYA MATHEMATICAL JOURNAL, 1984, 93 (MAR) :149-171
[7]  
Klingen H, 1990, Cambridge Studies in Advanced Mathematics, V20
[8]   Local spectral equidistribution for Siegel modular forms and applications [J].
Kowalski, Emmanuel ;
Saha, Abhishek ;
Tsimerman, Jacob .
COMPOSITIO MATHEMATICA, 2012, 148 (02) :335-384