Spline approximation of explicit surfaces containing irregularities

被引:9
|
作者
Arcangeli, R
Manzanilla, R
Torrens, JJ
机构
[1] INTEVEP SA, CARACAS 1070A, VENEZUELA
[2] UNIV PUBL NAVARRA, DEPT MATEMAT & INFORMAT, PAMPLONA 31006, SPAIN
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1997年 / 31卷 / 05期
关键词
D O I
10.1051/m2an/1997310506431
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of approximation of a non regular a functions, i.e. functions which are discontinuous or which have some discontinuous derivatives on a subset F of an open, bounded set Omega in R-n, and that belong to the Sobolev space H-m(Omega\(F) over bar) for some integer m > n/2. The question is to construct, from Lagrange of 1(st) order Hermite data of a non regular function f, an approximant of f of class C-k on Omega\(F) over bar with k = 1 or 2. The standard example of this situation is the modelling of geological surfaces (cf J. Springer [24]). The answer we provide to the problem of approximation of non regular functions is obtained by adapting the theory of D-m-splines over a bounded open set in R-n. We first define the D-m-splines over Omega' = Omega\(F) over bar and then, introducing a suitable finite element space, the ''discrete D-m-splines over Omega''' : these are the functions we propose for the approximation of non regular functions. Finally, we study the convergence of the discrete smoothing D-m-splines over Omega' and we give some numerical results.
引用
收藏
页码:643 / 676
页数:34
相关论文
共 50 条
  • [1] Approximation of developable surfaces with cone spline surfaces
    Leopoldseder, S
    Pottmann, H
    COMPUTER-AIDED DESIGN, 1998, 30 (07) : 571 - 582
  • [2] Explicit formulas for energy evaluations of B-spline surfaces
    Lu, Lizheng, 1600, Binary Information Press (11):
  • [3] Approximation with active B-spline curves and surfaces
    Pottmann, H
    Leopoldseder, S
    Hofer, M
    10TH PACIFIC CONFERENCE ON COMPUTER GRAPHICS AND APPLICATIONS, PROCEEDINGS, 2002, : 8 - 25
  • [4] On local approximation methods for multivariate polynomial spline surfaces
    Wenz H.-J.
    Results in Mathematics, 1997, 31 (1-2) : 170 - 179
  • [5] Approximation with rational B-spline curves and surfaces
    Elsasser, B
    MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 87 - 94
  • [6] Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis
    Sande, Espen
    Manni, Carla
    Speleers, Hendrik
    NUMERISCHE MATHEMATIK, 2020, 144 (04) : 889 - 929
  • [7] Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis
    Espen Sande
    Carla Manni
    Hendrik Speleers
    Numerische Mathematik, 2020, 144 : 889 - 929
  • [8] Thermal Image Approximation Using B-Spline Surfaces
    Robert Świta
    Zbigniew Suszyński
    International Journal of Thermophysics, 2018, 39
  • [9] Thermal Image Approximation Using B-Spline Surfaces
    Swita, Robert
    Suszynski, Zbigniew
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2018, 39 (11)
  • [10] Spline functions in chemistry: approximation of surfaces over triangle domains
    Lang-Lazi, M.
    Heszberger, J.
    Molnar-Jobbagy, M.
    Viczian, G.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (09) : 1634 - 1644