Entanglement of Pseudo-Hermitian Random States

被引:0
作者
Goulart, Cleverson Andrade [1 ]
Pato, Mauricio Porto [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05314970 Sao Paulo, Brazil
关键词
quantum information; von Neumann entropy; random matrix theory; pseudo-Hermitian operators; PT-symmetry; SUDDEN-DEATH; PT-SYMMETRY; HAMILTONIANS;
D O I
10.3390/e22101109
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a recent paper (A. Fring and T. Frith, Phys. Rev A 100, 101102 (2019)), a Dyson scheme to deal with density matrix of non-Hermitian Hamiltonians has been used to investigate the entanglement of states of a PT-symmetric bosonic system. They found that von Neumann entropy can show a different behavior in the broken and unbroken regime. We show that their results can be recast in terms of an abstract model of pseudo-Hermitian random matrices. It is found however that although the formalism is practically the same, the entanglement is not of Fock states but of Bell states.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 37 条
[1]  
Bell J. S., 1964, Physics, V1, P195, DOI 10.1103/PhysicsPhysiqueFizika.1.195
[2]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[3]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[4]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[5]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[6]  
Bengtsson I., 2017, Geometry of Quantum States: An Introduction to Quantum Entanglement, V2nd
[7]   Non-Hermitian β-ensemble with real eigenvalues [J].
Bohigas, O. ;
Pato, M. P. .
AIP ADVANCES, 2013, 3 (03)
[8]   Generalized Weyl-Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States [J].
Daoud, Mohammed ;
Kibler, Maurice R. .
ENTROPY, 2018, 20 (04)
[9]   QUANTUM COMPUTATIONAL NETWORKS [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 425 (1868) :73-90
[10]   Eternal life of entropy in non-Hermitian quantum systems [J].
Fring, Andreas ;
Frith, Thomas .
PHYSICAL REVIEW A, 2019, 100 (01)