Finitely generated nilpotent group C*-algebras have finite nuclear dimension

被引:6
作者
Eckhardt, Caleb [1 ]
McKenney, Paul [1 ]
机构
[1] Miami Univ, Dept Math, 501 E High St, Oxford, OH 45056 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2018年 / 738卷
关键词
NONCOMMUTATIVE TORI; DECOMPOSITION RANK; CROSSED-PRODUCTS; Z-STABILITY; CLASSIFICATION; REPRESENTATIONS; CHARACTERS; DISCRETE;
D O I
10.1515/crelle-2015-0049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that group C*-algebras of finitely generated, nilpotent groups have finite nuclear dimension. It then follows, from a string of deep results, that the C*-algebra A generated by an irreducible representation of such a group has decomposition rank at most 3. If, in addition, A satisfies the universal coefficient theorem, another string of deep results shows it is classifiable by its ordered K-theory and is approximately subhomogeneous. We observe that all C*-algebras generated by faithful irreducible representations of finitely generated, torsion free nilpotent groups satisfy the universal coefficient theorem.
引用
收藏
页码:281 / 298
页数:18
相关论文
共 41 条
[1]  
[Anonymous], 1983, CAMBRIDGE TRACTS MAT
[2]   FINITENESS PROPERTIES OF GROUPS [J].
BAER, R .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (04) :1021-1032
[3]  
Baumslag G., 1971, CBMS REG C SER MATH, V2
[4]  
Boca FP, 1997, J REINE ANGEW MATH, V492, P179
[5]   STABLE ISOMORPHISM OF HEREDITARY SUBALGEBRAS OF CSTAR-ALGEBRAS [J].
BROWN, LG .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 71 (02) :335-348
[6]  
Brown N.P., 2008, C*-Algebras and Finite Dimensional Approximations, V88
[7]   CHARACTERS OF NILPOTENT GROUPS [J].
CAREY, AL ;
MORAN, W .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 96 (JUL) :123-137
[8]   On groups with quasidiagonal C*-algebras [J].
Carrion, Jose R. ;
Dadarlat, Marius ;
Eckhardt, Caleb .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (01) :135-152
[9]   Classification of a class of crossed product C*-algebras associated with residually finite groups [J].
Carrion, Jose R. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (09) :2815-2825
[10]  
Eckhardt C., 2013, J OPERAT THEOR, V73, P417