Eigenvalue comparison for fractional boundary value problems with the Caputo derivative

被引:50
作者
Henderson, Johnny [1 ]
Kosmatov, Nickolai [2 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
关键词
u(0)-positive operator; cone; smallest eigenvalue; Caputo derivative; LINEAR-DIFFERENTIAL EQUATIONS; ORDER;
D O I
10.2478/s13540-014-0202-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the theory for u (0)-positive operators to obtain eigenvalue comparison results for a fractional boundary value problem with the Caputo derivative.
引用
收藏
页码:872 / 880
页数:9
相关论文
共 15 条
[1]  
Ahmad S., 1978, NONLINEAR EQUATIONS
[2]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[3]  
[Anonymous], 2006, Journal of the Electrochemical Society
[4]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[5]  
Eloe P.W., 2014, ELECTRON J DIFFER EQ, V34, P1
[6]  
Eloe P.W., 1989, APPL ANAL, V34, P25
[7]   COMPARISON OF EIGENVALUES ASSOCIATED WITH LINEAR-DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER [J].
GENTRY, RD ;
TRAVIS, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 223 (OCT) :167-179
[8]   A POSITIVITY RESULT APPLIED TO DIFFERENCE-EQUATIONS [J].
HANKERSON, D .
JOURNAL OF APPROXIMATION THEORY, 1989, 59 (01) :76-86
[9]   COMPARISON-THEOREMS FOR EIGENVALUE PROBLEMS FOR NTH ORDER DIFFERENTIAL-EQUATIONS [J].
HANKERSON, D ;
PETERSON, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (04) :1204-1211
[10]  
Hankerson D., 1990, DIFFER INTEGRAL EQU, V3, P363