Quantum information entropies for position-dependent mass Schrodinger problem

被引:80
作者
Yanez-Navarro, G. [1 ]
Sun, Guo-Hua [2 ]
Dytrych, T. [3 ]
Launey, K. D. [3 ]
Dong, Shi-Hai [1 ,3 ]
Draayerc, J. P. [3 ]
机构
[1] UPALM, Escuela Super Fis & Matemat, Inst Politecn Nacl, Dept Fis, Mexico City 07738, DF, Mexico
[2] Univ Autonoma Estado Mexico, Ctr Univ Valle Chalco, Solidaridad, Estado De Mexic, Mexico
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Position-dependent mass; Quantum information entropy; Null potential; HARMONIC-OSCILLATOR; UNCERTAINTY RELATIONS; LAGUERRE-POLYNOMIALS; SOLVABLE POTENTIALS; STRONG ASYMPTOTICS; MORSE; EQUATION;
D O I
10.1016/j.aop.2014.05.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Shannon entropy for the position-dependent Schrodinger equation for a particle with a nonuniform solitonic mass density is evaluated in the case of a trivial null potential. The position S-x and momentum S-p information entropies for the three lowest-lying states are calculated. In particular, for these states, we are able to derive analytical solutions for the S-x entropy as well as for the Fourier transformed wave functions, while the S-p quantity is calculated numerically. We notice the behavior of the S-x, entropy, namely, it decreases as the mass barrier width narrows and becomes negative beyond a particular width. The negative Shannon entropy exists for the probability densities that are highly localized. The mass barrier determines the stability of the system. The dependence of S-p on the width is contrary to the one for S-x. Some interesting features of the information entropy densities rho(s)(x) and rho(s)(P) are demonstrated. In addition, the Bialynicki-Birula-Mycielski (BBM) inequality is tested for a number of states and found to hold for all the cases. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 35 条
[1]   Maximum-entropy technique with logarithmic constraints:: Estimation of atomic radial densities [J].
Angulo, JC ;
Antolín, J ;
Zarzo, A ;
Cuchí, JC .
EUROPEAN PHYSICAL JOURNAL D, 1999, 7 (04) :479-485
[2]   SPATIAL ENTROPY OF CENTRAL POTENTIALS AND STRONG ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS [J].
APTEKAREV, AI ;
DEHESA, JS ;
YANEZ, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4423-4428
[3]   Quantum-information entropies of the eigenstates and the coherent state of the Poschl-Teller potential [J].
Atre, R ;
Kumar, A ;
Kumar, N ;
Panigrahi, PK .
PHYSICAL REVIEW A, 2004, 69 (05) :052107-1
[4]   Quantum information entropies of the eigenstates of the Morse potential [J].
Aydiner, Ekrem ;
Orta, Cenk ;
Sever, Ramazan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (03) :231-237
[5]   A general scheme for the effective-mass Schrodinger equation and the generation of the associated potentials [J].
Bagchi, B ;
Gorain, P ;
Quesne, C ;
Roychoudhury, R .
MODERN PHYSICS LETTERS A, 2004, 19 (37) :2765-2775
[6]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[7]  
Bialynicki-Birula I., ARXIVE10014668
[8]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[9]   Asymptotics of the information entropy for Jacobi and Laguerre polynomials with varying weights [J].
Buyarov, VS ;
Dehesa, JS ;
Martínez-Finkelshtein, A ;
Saff, EB .
JOURNAL OF APPROXIMATION THEORY, 1999, 99 (01) :153-166
[10]   Semiclassical position and momentum information entropy for sech2 and a family of rational potentials [J].
Coffey, Mark W. .
CANADIAN JOURNAL OF PHYSICS, 2007, 85 (07) :733-743