Quantum information entropies for position-dependent mass Schrodinger problem

被引:75
|
作者
Yanez-Navarro, G. [1 ]
Sun, Guo-Hua [2 ]
Dytrych, T. [3 ]
Launey, K. D. [3 ]
Dong, Shi-Hai [1 ,3 ]
Draayerc, J. P. [3 ]
机构
[1] UPALM, Escuela Super Fis & Matemat, Inst Politecn Nacl, Dept Fis, Mexico City 07738, DF, Mexico
[2] Univ Autonoma Estado Mexico, Ctr Univ Valle Chalco, Solidaridad, Estado De Mexic, Mexico
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Position-dependent mass; Quantum information entropy; Null potential; HARMONIC-OSCILLATOR; UNCERTAINTY RELATIONS; LAGUERRE-POLYNOMIALS; SOLVABLE POTENTIALS; STRONG ASYMPTOTICS; MORSE; EQUATION;
D O I
10.1016/j.aop.2014.05.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Shannon entropy for the position-dependent Schrodinger equation for a particle with a nonuniform solitonic mass density is evaluated in the case of a trivial null potential. The position S-x and momentum S-p information entropies for the three lowest-lying states are calculated. In particular, for these states, we are able to derive analytical solutions for the S-x entropy as well as for the Fourier transformed wave functions, while the S-p quantity is calculated numerically. We notice the behavior of the S-x, entropy, namely, it decreases as the mass barrier width narrows and becomes negative beyond a particular width. The negative Shannon entropy exists for the probability densities that are highly localized. The mass barrier determines the stability of the system. The dependence of S-p on the width is contrary to the one for S-x. Some interesting features of the information entropy densities rho(s)(x) and rho(s)(P) are demonstrated. In addition, the Bialynicki-Birula-Mycielski (BBM) inequality is tested for a number of states and found to hold for all the cases. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 50 条
  • [1] Shannon information entropies for position-dependent mass Schrodinger problem with a hyperbolic well
    Sun Guo-Hua
    Popov, Dusan
    Camacho-Nieto, Oscar
    Dong Shi-Hai
    CHINESE PHYSICS B, 2015, 24 (10)
  • [2] Shannon information entropies for position-dependent mass Schrdinger problem with a hyperbolic well
    Sun Guo-Hua
    Duan Popov
    Oscar Camacho-Nieto
    Dong Shi-Hai
    Chinese Physics B, 2015, (10) : 49 - 56
  • [3] Analytic Results in the Position-Dependent Mass Schrodinger Problem
    Cunha, M. S.
    Christiansen, H. R.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 60 (06) : 642 - 650
  • [4] Fisher information for the position-dependent mass Schrodinger system
    Falaye, B. J.
    Serrano, F. A.
    Dong, Shi-Hai
    PHYSICS LETTERS A, 2016, 380 (1-2) : 267 - 271
  • [5] The Schrodinger equation with position-dependent mass
    Killingbeck, J. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [6] Quantum Operator Approach Applied to the Position-Dependent Mass Schrodinger Equation
    Ovando, G.
    Pena, J. J.
    Morales, J.
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [8] On the Solution of the Schrodinger Equation with Position-Dependent Mass
    Sezgin, Mehmet
    UNIVERSE, 2020, 6 (03)
  • [9] Fisher information and quantum systems with position-dependent effective mass
    Puente, A
    Plastino, A
    Casas, M
    Garcias, F
    Plastino, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 277 (1-2) : 146 - 156
  • [10] Position-Dependent Mass Schrodinger Equation for the Morse Potential
    Ovando, G.
    Pena, J. J.
    Morales, J.
    Lopez-Bonilla, J.
    VIII INTERNATIONAL CONGRESS OF ENGINEERING PHYSICS, 2017, 792