Solvent resistant hollow fiber membranes comprising P84 polyimide and amine-functionalized carbon nanotubes with potential applications in pharmaceutical, food, and petrochemical industries

被引:84
作者
Farahani, Mohammad Hossein Davood Abadi [1 ]
Chung, Tai-Shung [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore
基金
新加坡国家研究基金会;
关键词
Organic solvent nanofiltration; Mixed matrix membranes; Functionalized carbon nanotubes; Polyimide; Hollow fiber; MIXED MATRIX MEMBRANES; GRAPHENE OXIDE MEMBRANES; FILM COMPOSITE MEMBRANES; NANOFILTRATION MEMBRANES; CROSS-LINKING; PERVAPORATION DEHYDRATION; SEPARATION PERFORMANCE; GAS SEPARATION; FLUX; REMOVAL;
D O I
10.1016/j.cej.2018.03.153
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Robust P84 and NH2-MWCNT/P84 hollow fiber membranes have been designed by adjusting spinning parameters and then crosslinking them by 1,6-hexanediamine to achieve desirable separation performance for organic solvent nanofiltration (OSN). A weak bore fluid, an adequately high dope flow rate and a small air gap length were required to produce the desired hollow fiber membranes. Compared the neat P84 hollow fiber, the addition of NH2-MWCNTs into P84 resulted in an amidation reaction between the imide groups of P84 and the amine groups of NH2-MWCNTs, leading to greater mechanical properties and thermal stability as well as higher dope viscosity. Moreover, NH2-MWCNT/P84 hollow fibers exhibited great permeances of 4.31, 2.26, 1.45, and 1.17 LMH/bar for acetone, methanol, ethyl acetate, and ethanol, respectively, while having smaller pore sizes with notable rejections. The crosslinked P84 and NH2-MWCNT/P84 membranes showed extraordinary rejections of 97.2, and 99.8% to methylene blue (320 g/mol), respectively. Also, the newly developed hollow fibers demonstrated great potential for separating tetracycline/IPA, L-alpha-lecithin/hexane, and BINAP-Ru(II)/methanol solutions, representing their applicability in the pharmaceutical, food, and petrochemical industries.
引用
收藏
页码:174 / 185
页数:12
相关论文
共 71 条
[1]   Updating and further expanding GSK's solvent sustainability guide [J].
Alder, Catherine M. ;
Hayler, John D. ;
Henderson, Richard K. ;
Redman, Aniko M. ;
Shukla, Lena ;
Shuster, Leanna E. ;
Sneddon, Helen F. .
GREEN CHEMISTRY, 2016, 18 (13) :3879-3890
[2]   Surface modification methods of organic solvent nanofiltration membranes [J].
Amirilargani, M. ;
Sadrzadeh, M. ;
Sudholter, E. J. R. ;
de Smet, L. C. P. M. .
CHEMICAL ENGINEERING JOURNAL, 2016, 289 :562-582
[3]  
[Anonymous], [No title captured]
[4]   Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes [J].
Askari, Mohammad ;
Chung, Tai-Shung .
JOURNAL OF MEMBRANE SCIENCE, 2013, 444 :173-183
[5]   Strategies for solvent selection - A literature review [J].
Barwick, VJ .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 1997, 16 (06) :293-309
[6]   Investigation of corrugation phenomenon in the inner contour of hollow fibers during the non-solvent induced phase-separation process [J].
Bonyadi, Sina ;
Chung, Tai Shung ;
Krantz, William B. .
JOURNAL OF MEMBRANE SCIENCE, 2007, 299 (1-2) :200-210
[7]   Unravelling the solvent flux behaviour of ceramic nanofiltration and ultrafiltration membranes [J].
Buekenhoudt, A. ;
Bisignano, F. ;
De Luca, G. ;
Vandezande, P. ;
Wouters, M. ;
Verhulst, K. .
JOURNAL OF MEMBRANE SCIENCE, 2013, 439 :36-47
[8]  
Chen XC, 2014, ASIA-PACIFIC MANAGEMENT AND ENGINEERING CONFERENCE (APME 2014), P33
[9]   Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation [J].
Chung, Tai-Shung ;
Jiang, Lan Ying ;
Li, Yi ;
Kulprathipanja, Santi .
PROGRESS IN POLYMER SCIENCE, 2007, 32 (04) :483-507
[10]   Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes [J].
Chung, TS ;
Qin, JJ ;
Gu, J .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (06) :1077-1091