Fractional Jump-diffusion Pricing Model under Stochastic Interest Rate

被引:0
作者
Xue, Hong [1 ]
Lu, Junxiang [1 ]
Li, Qiaoyan [1 ]
Wang, Xiaodong [1 ]
机构
[1] Xian Polytech Univ, Sch Sci, Xian 710048, Peoples R China
来源
INFORMATION AND FINANCIAL ENGINEERING, ICIFE 2011 | 2011年 / 12卷
关键词
option pricing; actuarial method; fractional jump-diffusion process; stochastic interest rate; FINANCE;
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The fractional jump-diffusion financial market model under stochastic interest rate is built, where stock price satisfies the fractional jump-diffusion process, and interest rate satisfies the fractional Hull White model. By mean of the physical probabilistic measure of price process, the principle of fair premium, and fractional jump-diffusion process theory, the pricing formulae of European option are obtained. The European option pricing model is generalized.
引用
收藏
页码:428 / 432
页数:5
相关论文
共 10 条
[1]   A note on Wick products and the fractional Black-Scholes model [J].
Björk, T ;
Hult, H .
FINANCE AND STOCHASTICS, 2005, 9 (02) :197-209
[2]   An actuarial approach to option pricing under the physical measure and without market assumptions [J].
Bladt, M ;
Rydberg, TH .
INSURANCE MATHEMATICS & ECONOMICS, 1998, 22 (01) :65-73
[3]  
[陈超 CHEN Chao], 2008, [工程数学学报, Chinese Journal of Engineering Mathematics], V25, P1129
[4]  
Cheng S., 2002, FINANCIAL ENG
[5]   A general fractional white noise theory and applications to finance [J].
Elliott, RJ ;
van der Hoek, J .
MATHEMATICAL FINANCE, 2003, 13 (02) :301-330
[6]   PRICING DERIVATIVES ON TWO-DIMENSIONAL LEVY PROCESSES [J].
Fajardo, Jose ;
Mordecki, Ernesto .
INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2006, 9 (02) :185-197
[7]   No arbitrage under transaction costs, with fractional brownian motion and beyond [J].
Guasoni, Paolo .
MATHEMATICAL FINANCE, 2006, 16 (03) :569-582
[8]   Fractional white noise calculus and applications to finance [J].
Hu, YZ ;
Oksendal, B .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (01) :1-32
[9]   An Actuarial Approach to the Minimum or Maximum Option Pricing in Fractional Brownian Motion Environment [J].
Xue, Hong ;
Li, Qiaoyan .
2010 2ND IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND FINANCIAL ENGINEERING (ICIFE), 2010, :216-219
[10]  
Xue H, 2009, RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II, P164