Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide)

被引:509
作者
Zhu, GZ
Mallery, SR
Schwendeman, SP
机构
[1] Ohio State Univ, Coll Pharm, Columbus, OH 43210 USA
[2] Ohio State Univ, Coll Dent, Columbus, OH 43210 USA
关键词
protein delivery; aggregation; stabilization; poly(DL-lactide-co-glycolide); bovine serum albumin;
D O I
10.1038/71916
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Controlled release from biodegradable polymers is a novel approach to replace daily painful injections of protein drugs. A major obstacle to development of these polymers is the need to retain the structure and biological activity of encapsulated proteins during months of incubation under physiological conditions. We encapsulated bovine serum albumin (BSA) in injectable poly(DL-lactide-co-glycolide) (PLGA) 50/50 cylindrical implants and determined the mechanism of BSA instability. Simulations of the polymer microclimate revealed that moisture and acidic pH (<3) triggered unfolding of encapsulated BSA, resulting in peptide bond hydrolysis and noncovalent aggregation. To neutralize the acids liberated by the biodegradable lactic/glycolic acid-based polyester we coincorporated into the polymer an antacid, Mg(OH)(2), which increased microclimate pH and prevented BSA structural losses and aggregation for over one month. We successfully applied this stabilization approach in both cylinder- and microsphere-injectable configurations and for delivery of angiogenic basic fibroblast growth factor and bone-regenerating bone morphogenetic protein-2.
引用
收藏
页码:52 / 57
页数:6
相关论文
共 44 条
[1]   INCORPORATION OF BASIC FIBROBLAST GROWTH-FACTOR INTO METHYLPYRROLIDINONE CHITOSAN FLEECES AND DETERMINATION OF THE IN-VITRO RELEASE CHARACTERISTICS [J].
BERSCHT, PC ;
NIES, B ;
LIEBENDORFER, A ;
KREUTER, J .
BIOMATERIALS, 1994, 15 (08) :593-600
[2]   pH and osmotic pressure inside biodegradable microspheres during erosion [J].
Brunner, A ;
Mäder, K ;
Göpferich, A .
PHARMACEUTICAL RESEARCH, 1999, 16 (06) :847-853
[3]   Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable microspheres [J].
Cleland, JL ;
Jones, AJS .
PHARMACEUTICAL RESEARCH, 1996, 13 (10) :1464-1475
[4]   CONTROLLED DELIVERY SYSTEMS FOR PROTEINS BASED ON POLY(LACTIC GLYCOLIC ACID) MICROSPHERES [J].
COHEN, S ;
YOSHIOKA, T ;
LUCARELLI, M ;
HWANG, LH ;
LANGER, R .
PHARMACEUTICAL RESEARCH, 1991, 8 (06) :713-720
[5]   SOLID-PHASE AGGREGATION OF PROTEINS UNDER PHARMACEUTICALLY RELEVANT CONDITIONS [J].
COSTANTINO, HR ;
LANGER, R ;
KLIBANOV, AM .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1994, 83 (12) :1662-1669
[6]   Adsorption determines in-vitro protein release rate from biodegradable microspheres: Quantitative analysis of surface area during degradation [J].
Crotts, G ;
Sah, H ;
Park, TG .
JOURNAL OF CONTROLLED RELEASE, 1997, 47 (01) :101-111
[7]   In vitro assessment of the biological activity of basic fibroblast growth factor released from various polymers and biomatrices [J].
Davies, MJ ;
Mitchell, CA ;
Maley, MAL ;
Grounds, MD ;
Harvey, AR ;
Plant, GW ;
Wood, DJ ;
Hong, Y ;
Chirila, TV .
JOURNAL OF BIOMATERIALS APPLICATIONS, 1997, 12 (01) :31-56
[8]  
Dutta A. S., 1993, Pharmaceutical Medicine (London), V7, P9
[9]   CONTROLLED AND MODULATED RELEASE OF BASIC FIBROBLAST GROWTH-FACTOR [J].
EDELMAN, ER ;
MATHIOWITZ, E ;
LANGER, R ;
KLAGSBRUN, M .
BIOMATERIALS, 1991, 12 (07) :619-626
[10]   PERIVASCULAR AND INTRAVENOUS ADMINISTRATION OF BASIC FIBROBLAST GROWTH-FACTOR - VASCULAR AND SOLID ORGAN DEPOSITION [J].
EDELMAN, ER ;
NUGENT, MA ;
KARNOVSKY, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (04) :1513-1517