A Bayesian Parameter Learning Procedure for Nonlinear Dynamical Systems via the Ensemble Kalman Filter

被引:0
|
作者
Rehman, Muhammad Javvad Ur [1 ]
Dass, Sarat C. [1 ]
Asirvadam, Vijanth S. [2 ]
机构
[1] Univ Teknol PETRON, Fundamental & Appl Sci Dept, Seri Iskandar, Malaysia
[2] Univ Teknol PETRON, Dept Elect & Elect Engn, Seri Iskandar, Malaysia
来源
2018 IEEE 14TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA 2018) | 2018年
关键词
SEQUENTIAL DATA ASSIMILATION; MODEL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dynamical systems are a natural and convenient way to model the evolution of processes observed in practice. When uncertainty is considered and incorporated, these system become known as stochastic dynamical systems. Based on observations made from stochastic dynamical systems, we consider the issue of parameter learning, and a related state estimation problem. We develop a Markov Chain Monte Carlo (MCMC) algorithm, which is an iterative method, for parameter inference. Within the parameter learning steps, the MCMC algorithm requires to perform state estimation for which the target distribution is constructed by using the Ensemble Kalman filter (EnKF). The methodology is illustrated using two examples of nonlinear stochastic dynamical systems.
引用
收藏
页码:161 / 166
页数:6
相关论文
共 50 条
  • [1] Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter
    Arnold, Andrea
    Calvetti, Daniela
    Somersalo, Erkki
    INVERSE PROBLEMS, 2014, 30 (10)
  • [2] A Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation
    Stroud, Jonathan R.
    Katzfuss, Matthias
    Wikle, Christopher K.
    MONTHLY WEATHER REVIEW, 2018, 146 (01) : 373 - 386
  • [3] Spatial variability of geomechanical parameter, estimation via ensemble kalman filter
    Zhao, Hong-Liang
    Feng, Xia-Ting
    Zhang, Dong-Xiao
    Zhou, Hui
    Yantu Lixue/Rock and Soil Mechanics, 2007, 28 (10): : 2219 - 2223
  • [4] Spatial variability of geomechanical parameter estimation via ensemble kalman filter
    Zhao Hong-liang
    Feng Xia-ting
    Zhang Dong-xiao
    Zhou Hui
    ROCK AND SOIL MECHANICS, 2007, 28 (10) : 2219 - +
  • [5] Groundwater parameter estimation via ensemble kalman filter with covariance localization
    Nan, T. C.
    Wu, J. C.
    CALIBRATION AND RELIABILITY IN GROUNDWATER MODELING: MANAGING GROUNDWATER AND THE ENVIRONMENT, 2009, : 51 - 54
  • [6] Data assimilation for nonlinear systems with a hybrid nonlinear Kalman ensemble transform filter
    Nerger, Lars
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (743) : 620 - 640
  • [7] Nonlinear Data Assimilation by Deep Learning Embedded in an Ensemble Kalman Filter
    Tsuyuki, Tadashi
    Tamura, Ryosuke
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2022, 100 (03) : 533 - 553
  • [8] Cubature Ensemble Kalman Filter for Highly Dimensional Strongly Nonlinear Systems
    Meng, Qingwen
    Leib, Harry
    Li, Xuyou
    IEEE ACCESS, 2020, 8 : 144892 - 144907
  • [9] An Augmented Cubature Kalman Filter for Nonlinear Dynamical Systems with Random Parameters
    Qu, Xiaomei
    Mu, Lei
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 1114 - 1118
  • [10] An unscented Kalman filter approach to the estimation of nonlinear dynamical systems models
    Chow, Sy-Miin
    Ferrer, Emilio
    Nesselroade, John R.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2007, 42 (02) : 283 - 321