Computer simulations of two-dimensional and three-dimensional ideal grain growth

被引:274
作者
Kim, Seong Gyoon [1 ]
Kim, Dong Ik
Kim, Won Tae
Park, Yong Bum
机构
[1] Kunsan Natl Univ, Dept Mat Sci & Engn, Kunsan 573701, South Korea
[2] Chongju Univ, Div Appl Sci, Chonju 360764, South Korea
[3] Sunchon Natl Univ, Dept Mat Sci & Met Engn, Sunchon 540742, South Korea
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 06期
关键词
MONTE-CARLO-SIMULATION; MICROSTRUCTURAL EVOLUTION; SIZE DISTRIBUTIONS; STATISTICAL-THEORY; DENDRITIC GROWTH; DIMENSIONS; FIELD MODEL; FOAM CELLS; KINETICS; SYSTEMS;
D O I
10.1103/PhysRevE.74.061605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We developed an efficient computation scheme for the phase-field simulation of grain growth, which allows unlimited number of the orientation variables and high computational efficiency independent of them. Large-scale phase-field simulations of the ideal grain growth in two-dimensions (2D) and three-dimensions (3D) were carried out with holding the coalescence-free condition, where a few tens of thousands grains evolved into a few thousand grains. By checking the validity of the von Neumann-Mullins law for individual grains, it could be shown that the present simulations were correctly carried out under the conditions of the ideal grain growth. The steady-state grain size distribution in 2D appeared as a symmetrical shape with a plateau slightly inclined to the small grain side, which was quite different from the Hillert 2D distribution. The existence of the plateau stems from the wide separation of the peaks in the size distributions of the grains with five, six, and seven sides. The steady-state grain size distribution in 3D simulation of the ideal grain growth appeared to be very close to the Hillert 3D distribution, independent of the initial average grain size and size distribution. The mean-field assumption, the Lifshitz-Slyozov stability condition, and all resulting predictions in the Hillert 3D theory were in excellent agreement with the present 3D simulation. Thus the Hillert theory can be regarded as an accurate description for the 3D ideal grain growth. The dependence of the growth rate in 3D simulations on the grain topology were discussed. The large-scale phase-field simulation confirms the 3D growth law obtained from the Surface Evolver simulations in smaller scales.
引用
收藏
页数:14
相关论文
共 60 条
[1]   STATISTICAL-THEORY OF 2-DIMENSIONAL GRAIN-GROWTH .1. THE TOPOLOGICAL FOUNDATION [J].
ABBRUZZESE, G ;
HECKELMANN, I ;
LUCKE, K .
ACTA METALLURGICA ET MATERIALIA, 1992, 40 (03) :519-532
[2]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[3]   COMPUTER-SIMULATION OF GRAIN-GROWTH .1. KINETICS [J].
ANDERSON, MP ;
SROLOVITZ, DJ ;
GREST, GS ;
SAHNI, PS .
ACTA METALLURGICA, 1984, 32 (05) :783-791
[4]   A stochastic grain growth model based on a variational principle for dissipative systems [J].
Cleri, F .
PHYSICA A, 2000, 282 (3-4) :339-354
[5]   A discrete approach to grain growth based on pair interactions [J].
Di Nunzio, PE .
ACTA MATERIALIA, 2001, 49 (17) :3635-3643
[6]   Computer simulation of grain growth using a continuum field model [J].
Fan, D ;
Chen, LQ .
ACTA MATERIALIA, 1997, 45 (02) :611-622
[7]   Computer simulation of topological evolution in 2-D grain growth using a continuum diffuse-interface field model [J].
Fan, DN ;
Geng, CW ;
Chen, LQ .
ACTA MATERIALIA, 1997, 45 (03) :1115-1126
[8]   Steady-state grain-size distributions resulting from grain growth in two dimensions [J].
Fayad, W ;
Thompson, CV ;
Frost, HJ .
SCRIPTA MATERIALIA, 1999, 40 (10) :1199-1204
[9]   A 2-DIMENSIONAL COMPUTER-SIMULATION OF CAPILLARITY-DRIVEN GRAIN-GROWTH - PRELIMINARY-RESULTS [J].
FROST, HJ ;
THOMPSON, CV ;
HOWE, CL ;
WHANG, JH .
SCRIPTA METALLURGICA, 1988, 22 (01) :65-70
[10]  
FUCHIZAKI K, 1995, PHYSICA A, V221, P202, DOI 10.1016/0378-4371(95)00224-U