Continuously tunable diamond Raman laser for resonance laser ionization

被引:18
作者
Chrysalidis, Katerina [1 ,2 ]
Fedosseev, Valentin N. [1 ]
Marsh, Bruce A. [1 ]
Mildren, Richard P. [3 ]
Spence, David J. [3 ]
Wendt, Klaus D. A. [2 ]
Wilkins, Shane G. [1 ]
Granados, Eduardo [1 ]
机构
[1] CERN, CH-1217 Geneva, Switzerland
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[3] Macquarie Univ, MQ Photon Res Ctr, N Ryde, NSW 2109, Australia
基金
欧盟地平线“2020”;
关键词
ION-SOURCE; CERN-ISOLDE; HIGH-POWER;
D O I
10.1364/OL.44.003924
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a highly efficient, tunable, similar to 5 GHz linewidth diamond Raman laser operating at 479 nm. The diamond laser was pumped by a wavelength-tunable intracavity frequency-doubled titanium sapphire (Ti: Sapphire) laser operating at around 450 nm, at a repetition rate of 10 kHz with a pulse duration of 50 ns. The Raman resonator produced a continuously tunable output with high stability, high conversion efficiency (28%), and beam quality (M-2 < 1.2). We also demonstrate that the linewidth and tunability of the pump laser is directly transferred to the Stokes output. Our results show that diamond Raman lasers offer great potential for spectroscopic applications, such as resonance laser ionization, in an all-solid-state platform. (C) 2019 Optical Society of America.
引用
收藏
页码:3924 / 3927
页数:4
相关论文
共 27 条
[1]   Comparative spontaneous Raman spectroscopy of crystals for Raman lasers [J].
Basiev, TT ;
Sobol, AA ;
Zverev, PG ;
Osiko, VV ;
Powell, RC .
APPLIED OPTICS, 1999, 38 (03) :594-598
[2]   The ISOLDE facility [J].
Catherall, R. ;
Andreazza, W. ;
Breitenfeldt, M. ;
Dorsival, A. ;
Focker, G. J. ;
Gharsa, T. P. ;
Giles, T. J. ;
Grenard, J-L ;
Locci, F. ;
Martins, P. ;
Marzari, S. ;
Schipper, J. ;
Shornikov, A. ;
Stora, T. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2017, 44 (09)
[3]   Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE [J].
Fedosseev, Valentin ;
Chrysalidis, Katerina ;
Goodacre, Thomas Day ;
Marsh, Bruce ;
Rothe, Sebastian ;
Seiffert, Christoph ;
Wendt, Klaus .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2017, 44 (08)
[4]   Deep ultraviolet diamond Raman laser [J].
Granados, Eduardo ;
Spence, David J. ;
Mildren, Richard P. .
OPTICS EXPRESS, 2011, 19 (11) :10857-10863
[5]  
Hernandez G., 1986, Cambridge Studies in Modern Physics
[6]  
Lassen J, 2009, AIP CONF PROC, V1099, P769, DOI 10.1063/1.3120151
[7]   GISELE: A resonant ionization laser ion source for the production of radioactive ions at GANIL [J].
Lecesne, N. ;
Alves-Conde, R. ;
Coterreau, E. ;
De Oliveira, F. ;
Dubois, M. ;
Flambard, J. L. ;
Franberg, H. ;
Gottwald, T. ;
Jardin, P. ;
Lassen, J. ;
Le Blanc, F. ;
Leroy, R. ;
Mattolat, C. ;
Olivier, A. ;
Pacquet, J. Y. ;
Pichard, A. ;
Rothe, S. ;
Saint-Laurent, M. G. ;
Wendt, K. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (02)
[8]   Comparing phonon dephasing lifetimes in diamond using Transient Coherent Ultrafast Phonon Spectroscopy [J].
Lee, K. C. ;
Sussman, Benjamin J. ;
Nunn, J. ;
Lorenz, V. O. ;
Reim, K. ;
Jaksch, D. ;
Walmsley, I. A. ;
Spizzirri, P. ;
Prawer, S. .
DIAMOND AND RELATED MATERIALS, 2010, 19 (10) :1289-1295
[9]   RAMAN EFFECT IN CRYSTALS [J].
LOUDON, R .
ADVANCES IN PHYSICS, 1964, 13 (52) :423-&
[10]   Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection [J].
Lux, Oliver ;
Sarang, Soumya ;
Williams, Robert J. ;
McKay, Aaron ;
Mildren, Richard P. .
OPTICS EXPRESS, 2016, 24 (24) :27812-27820