Interpolation domains

被引:17
|
作者
Cahen, PJ [1 ]
Chabert, JL
Frisch, S
机构
[1] Fac Sci St Jerome, F-13397 Marseille 20, France
[2] Fachbereich Math & Informat, F-80039 Amiens, France
[3] Graz Tech Univ, Inst Math C, A-8010 Graz, Austria
关键词
interpolation; integer-valued polynomials; Dedekind and almost Dedekind domains; unibranched domains; double-boundedness;
D O I
10.1006/jabr.1999.8151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Call a domain D with quotient field K an interpolation domain if, for each choice of distinct arguments a(1),...,a(n) and arbitrary values c(1),...,c(n), in D, there exists an integer-valued polynomial f (that is, f is an element of K[X] with f(D) subset of or equal to (D)), such that f(a(i)) = c(i) for 1 less than or equal to i less than or equal to n. We characterize completely the interpolatian domains if D is Noetherian or a Prufer domain. In the first case, we show that D is an interpolation domain if and only if it is one-dimensional locally unibranched with finite residue fields, in the second one, if and only if the ring Int(D) = {f is an element of K[X]\f(D) subset of or equal to D} of integer-valued polynomials is itself a Prufer domain. We also show that an interpolation domain must satisfy a double-boundedness condition, and thereby simplify a recent characterization of the domains D such that Int(D) is a Prufer domain. (C) 2000 Academic Press.
引用
收藏
页码:794 / 803
页数:10
相关论文
共 50 条
  • [1] An interpolation characterization of domains of holomorphy
    LIU Taishun
    2. Department of Mathematics
    Chinese Science Bulletin, 1997, (23) : 1954 - 1956
  • [2] Spline Interpolation on Unbounded Domains
    Skeel, Robert D.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [3] An interpolation problem in tube domains
    Mihai Putinar
    Integral Equations and Operator Theory, 1997, 28 : 330 - 342
  • [4] An interpolation problem in tube domains
    Putinar, M
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 28 (03) : 330 - 342
  • [5] Interpolation in the time and frequency domains
    Ferreira, PJSG
    IEEE SIGNAL PROCESSING LETTERS, 1996, 3 (06) : 176 - 178
  • [6] Interpolation for Synthesis on Unbounded Domains
    Kuncak, Viktor
    Blanc, Regis
    2013 FORMAL METHODS IN COMPUTER-AIDED DESIGN (FMCAD), 2013, : 93 - 96
  • [7] An interpolation characterization of domains of holomorphy
    Liu, TS
    Liu, CW
    Zhang, WJ
    CHINESE SCIENCE BULLETIN, 1997, 42 (23): : 1954 - 1956
  • [8] Interpolation in the DST and DCT domains
    Martucci, SA
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2000, : 339 - 342
  • [9] An interpolation inequality in exterior domains.
    Crispo, F
    Maremonti, P
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2004, 112 : 11 - 39
  • [10] ON THE INTERPOLATION THEOREM FOR THE LOGIC OF CONSTANT DOMAINS
    LOPEZESCOBAR, EGK
    JOURNAL OF SYMBOLIC LOGIC, 1981, 46 (01) : 87 - 88