Instability of an ''approximate black hole''

被引:9
作者
Choptuik, MW
Hirschmann, EW
Liebling, SL
机构
[1] Center for Relativity, The University of Texas at Austin, Austin, TX
来源
PHYSICAL REVIEW D | 1997年 / 55卷 / 10期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.55.6014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the stability of a family of spherically symmetric static solutions in vacuum Brans-Dicke theory (with omega=0) recently described by van Putten. Using linear perturbation theory, we find one exponentially growing mode for every member of the family of solutions, and thus conclude that the solutions are not stable. Using a previously constructed code for spherically symmetric Brans-Dicke theory, additional evidence for instability is provided by directly evolving the static solutions with perturbations. The full nonlinear evolutions also suggest that the solutions are black-hole-threshold critical solutions.
引用
收藏
页码:6014 / 6018
页数:5
相关论文
共 11 条
[1]   PARTICLE-LIKE SOLUTIONS OF THE EINSTEIN-YANG-MILLS EQUATIONS [J].
BARTNIK, R ;
MCKINNON, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (02) :141-144
[2]   MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION [J].
BRANS, C ;
DICKE, RH .
PHYSICAL REVIEW, 1961, 124 (03) :925-&
[3]   RECIPROCAL STATIC METRICS AND SCALAR FIELDS IN THE GENERAL THEORY OF RELATIVITY [J].
BUCHDAHL, HA .
PHYSICAL REVIEW, 1959, 115 (05) :1325-1328
[4]   Critical behavior in gravitational collapse of a Yang-Mills field [J].
Choptuik, MW ;
Chmaj, T ;
Bizon, P .
PHYSICAL REVIEW LETTERS, 1996, 77 (03) :424-427
[5]  
HARA T, 1996, GRQC9607010 LANL
[6]   REALITY OF SCHWARZSCHILD SINGULARITY [J].
JANIS, AI ;
NEWMAN, ET ;
WINICOUR, J .
PHYSICAL REVIEW LETTERS, 1968, 20 (16) :878-&
[7]   DYNAMIC INSTABILITY OF THE STATIC REAL SCALAR FIELD SOLUTIONS TO THE EINSTEIN-KLEIN-GORDON EQUATIONS [J].
JETZER, P ;
SCIALOM, D .
PHYSICS LETTERS A, 1992, 169 (1-2) :12-20
[8]   Black hole criticality in the Brans-Dicke model [J].
Liebling, SL ;
Choptuik, MW .
PHYSICAL REVIEW LETTERS, 1996, 77 (08) :1424-1427
[9]   Approximate black holes for numerical relativity [J].
vanPutten, MHPM .
PHYSICAL REVIEW D, 1996, 54 (10) :R5931-R5934
[10]  
Weinberg S., 1972, Gravitation and cosmology: principles and applications of the general theory of relativity