Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature

被引:63
作者
Bethuel, F. [1 ]
Orlandi, G.
Smets, D.
机构
[1] Univ Paris 06, Lab JL Lions, Paris, France
[2] Inst Univ France, Paris, France
[3] Univ Verona, Dipartimento Informat, I-37100 Verona, Italy
关键词
D O I
10.4007/annals.2006.163.37
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the complex parabolic Ginzburg-Landau equation, we prove that, asymptotically, vorticity evolves according to motion by mean curvature in Brakke's weak formulation. The only assumption is a natural energy bound on the initial data. In some cases, we also prove convergence to enhanced motion in the sense of Ilmanen.
引用
收藏
页码:37 / 163
页数:127
相关论文
共 59 条