On defining the incomplete gamma function γ(-m, x-)

被引:9
作者
Fisher, B [1 ]
机构
[1] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
关键词
gamma function; incomplete Gamma function; Delta function;
D O I
10.1080/10652460412331270698
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The incomplete Gamma function gamma(alpha, x_) is defined as a locally summable function on the real line for alpha > 0 by gamma (alpha, x_) = integral(0)(-x-) \u\(alpha-1) e(-u) du. the integral diverging alpha less than or equal to 0. The incomplete Gamma function gamma (alpha, x_) is then defined as a distribution for alpha < 0 and alpha not equal - 1, -2,... by using the recurrence formula gamma (alpha + 1.x_) = -alpha gamma(alpha, x_) - x_(alpha)e(-x). In the following, we define the distribution gamma (-m, x_) for m = 0, 1, 2.....
引用
收藏
页码:467 / 476
页数:10
相关论文
共 7 条
  • [1] ERDELYI A, 1953, HIGHER TRANSCENDENTI, V1
  • [2] On defining the incomplete Gamma function
    Fisher, B
    Jolevsaka-Tuneska, B
    Kiliçman, A
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2003, 14 (04) : 293 - 299
  • [3] FISHER B, 2002, RADOVI MAT, V11, P37
  • [4] FISHER B, 1987, NAT SCI, V36, P1
  • [5] Fisher B., 1980, MATH STUDENT, V48, P269
  • [6] GELFAND IM, 1964, GEN FUNCT, V1, pCH1
  • [7] van der Corput J. G., 1959, J. Analyse Math., V7, P291