An S-type upper bound for the largest singular value of nonnegative rectangular tensors

被引:10
作者
Zhao, Jianxing [1 ]
Sang, Caili [1 ]
机构
[1] Guizhou Minzu Univ, Coll Sci, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonnegative tensor; Rectangular tensor; Singular value; EIGENVALUE; ELLIPTICITY;
D O I
10.1515/math-2016-0085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An S-type upper bound for the largest singular value of a nonnegative rectangular tensor is given by breaking N = {1, 2, . . . n} into disjoint subsets S and its complement. It is shown that the new upper bound is smaller than that provided by Yang and Yang (2011). Numerical examples are given to verify the theoretical results.
引用
收藏
页码:925 / 933
页数:9
相关论文
共 13 条
[1]   On eigenvalue problems of real symmetric tensors [J].
Chang, K. C. ;
Pearson, Kelly ;
Zhang, Tan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) :416-422
[2]   Singular values of a real rectangular tensor [J].
Chang, Kungching ;
Qi, Liqun ;
Zhou, Guanglu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (01) :284-294
[3]   A tensor product matrix approximation problem in quantum physics [J].
Dahl, Geir ;
Leinaas, Jon Magne ;
Myrheim, Jan ;
Ovrum, Eirik .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) :711-725
[4]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[5]   Upper bound for the largest Z-eigenvalue of positive tensors [J].
He, Jun ;
Huang, Ting-Zhu .
APPLIED MATHEMATICS LETTERS, 2014, 38 :110-114
[6]   ELLIPTICITY OF EQUATIONS OF NONLINEAR ELASTOSTATICS FOR A SPECIAL MATERIAL [J].
KNOWLES, JK ;
STERNBERG, E .
JOURNAL OF ELASTICITY, 1975, 5 (3-4) :341-361
[7]   An S-type eigenvalue localization set for tensors [J].
Li, Chaoqian ;
Jiao, Aiquan ;
Li, Yaotang .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 :469-483
[8]   A new eigenvalue inclusion set for tensors and its applications [J].
Li, Chaoqian ;
Chen, Zhen ;
Li, Yaotang .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 481 :36-53
[9]   New eigenvalue inclusion sets for tensors [J].
Li, Chaoqian ;
Li, Yaotang ;
Kong, Xu .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (01) :39-50
[10]   Z-eigenpair bounds for an irreducible nonnegative tensor [J].
Li, Wen ;
Liu, Dongdong ;
Vong, Seak-Weng .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 483 :182-199