Landmark Models for Optimizing the Use of Repeated Measurements of Risk Factors in Electronic Health Records to Predict Future Disease Risk

被引:35
作者
Paige, Ellie [1 ]
Barrett, Jessica [1 ]
Stevens, David [1 ]
Keogh, Ruth H. [1 ]
Sweeting, Michael J. [1 ]
Nazareth, Irwin [1 ]
Petersen, Irene [1 ]
Wood, Angela M. [1 ]
机构
[1] Univ Cambridge, Dept Publ Hlth & Primary Care, Strangeways Res Lab, Cambridge CB1 8RN, England
基金
英国医学研究理事会;
关键词
cardiovascular disease; dynamic risk prediction; electronic health records; landmarking; mixed-effects models; primary care records; PRIMARY-CARE; CARDIOVASCULAR RISK; VALIDATION; IDENTIFY; PERIODS;
D O I
10.1093/aje/kwy018
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The benefits of using electronic health records (EHRs) for disease risk screening and personalized health-care decisions are being increasingly recognized. Here we present a computationally feasible statistical approach with which to address the methodological challenges involved in utilizing historical repeat measures of multiple risk factors recorded in EHRs to systematically identify patients at high risk of future disease. The approach is principally based on a 2-stage dynamic landmark model. The first stage estimates current risk factor values from all available historical repeat risk factor measurements via landmark-age-specific multivariate linear mixed-effects models with correlated random intercepts, which account for sporadically recorded repeat measures, unobserved data, and measurement errors. The second stage predicts future disease risk from a sex-stratified Cox proportional hazards model, with estimated current risk factor values from the first stage. We exemplify these methods by developing and validating a dynamic 10-year cardiovascular disease risk prediction model using primary-care EHRs for age, diabetes status, hypertension treatment, smoking status, systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol in 41,373 persons from 10 primary-care practices in England and Wales contributing to The Health Improvement Network (1997-2016). Using cross-validation, the model was well-calibrated (Brier score = 0.041, 95% confidence interval: 0.039, 0.042) and had good discrimination (C-index = 0.768, 95% confidence interval: 0.759, 0.777).
引用
收藏
页码:1530 / 1538
页数:9
相关论文
共 50 条
  • [41] Risk factors for cutaneous myiasis (blowfly strike) in pet rabbits in Great Britain based on text-mining veterinary electronic health records
    Turner, Rachel
    Arsevska, Elena
    Brant, Beth
    Singleton, David A.
    Newman, Jenny
    Noble, P. J-M
    Jones, Philip H.
    Radford, Alan D.
    PREVENTIVE VETERINARY MEDICINE, 2018, 153 : 77 - 83
  • [42] Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression
    Van Vleck, Tielman T.
    Chan, Lili
    Coca, Steven G.
    Craven, Catherine K.
    Do, Ron
    Ellis, Stephen B.
    Kannry, Joseph L.
    Loos, Ruth J. F.
    Bonis, Peter A.
    Cho, Judy
    Nadkarni, Girish N.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2019, 129 : 334 - 341
  • [43] Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis
    Paige, Ellie
    Barrett, Jessica
    Pennells, Lisa
    Sweeting, Michael
    Willeit, Peter
    Di Angelantonio, Emanuele
    Gudnason, Vilmundur
    Nordestgaard, Borge G.
    Psaty, Bruce M.
    Goldbourt, Uri
    Best, Lyle G.
    Assmann, Gerd
    Salonen, Jukka T.
    Nietert, Paul J.
    Verschuren, W. M. Monique
    Brunner, Eric J.
    Kronmal, Richard A.
    Salomaa, Veikko
    Bakker, Stephan J. L.
    Dagenais, Gilles R.
    Sato, Shinichi
    Jansson, Jan-Hakan
    Willeit, Johann
    Onat, Altan
    de la Camara, Agustin Gomez
    Roussel, Ronan
    Volzke, Henry
    Dankner, Rachel
    Tipping, Robert W.
    Meade, Tom W.
    Donfrancesco, Chiara
    Kuller, Lewis H.
    Peters, Annette
    Gallacher, John
    Kromhout, Daan
    Iso, Hiroyasu
    Knuiman, Matthew
    Casiglia, Edoardo
    Kavousi, Maryam
    Palmieri, Luigi
    Sundstrom, Johan
    Davis, Barry R.
    Njolstad, Inger
    Couper, David
    Danesh, John
    Thompson, Simon G.
    Wood, Angela
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2017, 186 (08) : 899 - 907
  • [44] Risk Factors for Suboptimal Medication Adherence in Persons With Multiple Sclerosis: Development of an Electronic Health Record-Based Explanatory Model for Disease-Modifying Therapy Use
    Gromisch, Elizabeth S.
    Turner, Aaron P.
    Leipertz, Steven L.
    Beauvais, John
    Haselkorn, Jodie K.
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2020, 101 (05): : 807 - 814
  • [45] UK prevalence of underlying conditions which increase the risk of severe COVID-19 disease: a point prevalence study using electronic health records
    Jemma L. Walker
    Daniel J. Grint
    Helen Strongman
    Rosalind M. Eggo
    Maria Peppa
    Caroline Minassian
    Kathryn E. Mansfield
    Christopher T. Rentsch
    Ian J. Douglas
    Rohini Mathur
    Angel Y. S. Wong
    Jennifer K. Quint
    Nick Andrews
    Jamie Lopez Bernal
    J. Anthony Scott
    Mary Ramsay
    Liam Smeeth
    Helen I. McDonald
    BMC Public Health, 21
  • [46] UK prevalence of underlying conditions which increase the risk of severe COVID-19 disease: a point prevalence study using electronic health records
    Walker, Jemma L.
    Grint, Daniel J.
    Strongman, Helen
    Eggo, Rosalind M.
    Peppa, Maria
    Minassian, Caroline
    Mansfield, Kathryn E.
    Rentsch, Christopher T.
    Douglas, Ian J.
    Mathur, Rohini
    Wong, Angel Y. S.
    Quint, Jennifer K.
    Andrews, Nick
    Bernal, Jamie Lopez
    Scott, J. Anthony
    Ramsay, Mary
    Smeeth, Liam
    McDonald, Helen I.
    BMC PUBLIC HEALTH, 2021, 21 (01)
  • [47] Rationale and design of a multicenter Chronic Kidney Disease (CKD) and at-risk for CKD electronic health records-based registry: CURE-CKD
    Keith C. Norris
    O. Kenrik Duru
    Radica Z. Alicic
    Kenn B. Daratha
    Susanne B. Nicholas
    Sterling M. McPherson
    Douglas S. Bell
    Jenny I. Shen
    Cami R. Jones
    Tannaz Moin
    Amy D. Waterman
    Joshua J. Neumiller
    Roberto B. Vargas
    Alex A. T. Bui
    Carol M. Mangione
    Katherine R. Tuttle
    BMC Nephrology, 20
  • [48] Rationale and design of a multicenter Chronic Kidney Disease (CKD) and at-risk for CKD electronic health records-based registry: CURE-CKD
    Norris, Keith C.
    Duru, O. Kenrik
    Alicic, Radica Z.
    Daratha, Kenn B.
    Nicholas, Susanne B.
    McPherson, Sterling M.
    Bell, Douglas S.
    Shen, Jenny I.
    Jones, Cami R.
    Moin, Tannaz
    Waterman, Amy D.
    Neumiller, Joshua J.
    Vargas, Roberto B.
    Bui, Alex A. T.
    Mangione, Carol M.
    Tuttle, Katherine R.
    BMC NEPHROLOGY, 2019, 20 (01)
  • [49] Risk factors for incident heart failure in age- and sex-specific strata: a population-based cohort using linked electronic health records
    Uijl, Alicia
    Koudstaal, Stefan
    Direk, Kenan
    Denaxas, Spiros
    Groenwold, Rolf H. H.
    Banerjee, Amitava
    Hoes, Arno W.
    Hemingway, Harry
    Asselbergs, Folkert W.
    EUROPEAN JOURNAL OF HEART FAILURE, 2019, 21 (10) : 1197 - 1206
  • [50] Development of a Hospital Outcome Measure Intended for Use With Electronic Health Records 30-Day Risk-standardized Mortality After Acute Myocardial Infarction
    McNamara, Robert L.
    Wang, Yongfei
    Partovian, Chohreh
    Montague, Julia
    Mody, Purav
    Eddy, Elizabeth
    Krumholz, Harlan M.
    Bernheim, Susannah M.
    MEDICAL CARE, 2015, 53 (09) : 818 - 826