On partially minimum-phase systems and disturbance decoupling with stability

被引:1
作者
Mattioni, Mattia [1 ]
Hassan, Marwa [1 ]
Monaco, Salvatore [1 ]
Normand-Cyrot, Dorothee [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Ingn Informat Automat & Gestionale A, Via Ariosto 25, I-00185 Rome, Italy
[2] CNRS UMR 8506, L2S, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
关键词
Nonlinear control; Disturbance decoupling; Sampled-data systems; SAMPLED-DATA SYSTEMS; FEEDBACK; ZEROS; REJECTION; DYNAMICS; ORDER;
D O I
10.1007/s11071-019-04999-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we consider the problem of disturbance decoupling for a class of non-minimum-phase nonlinear systems. Based on the notion of partially minimum phaseness, we shall characterize all actions of disturbances which can be decoupled via a static state feedback while preserving stability of the internal residual dynamics. The proposed methodology is then extended to the sampled-data framework via multi-rate design to cope with the rising of the so-called sampling zero dynamics intrinsically induced by classical single-rate sampling.
引用
收藏
页码:583 / 598
页数:16
相关论文
共 50 条
[41]   Global robust disturbance attenuation and almost disturbance decoupling for uncertain cascaded nonlinear systems [J].
Su, WZ ;
Xie, LH ;
de Souza, CE .
AUTOMATICA, 1999, 35 (04) :697-707
[42]   Adaptive suboptimal tracking under bounded Lipshitz uncertainty in a discrete minimum-phase object [J].
Sokolov, V. F. .
AUTOMATION AND REMOTE CONTROL, 2017, 78 (10) :1775-1789
[43]   Analysis of Minimum-Phase Fourth-Order Buck DC-DC Converter [J].
Veerachary, Mummadi .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (01) :144-154
[44]   Approximate Synchronization of Complex Network Consisting of Nodes With Minimum-Phase Zero Dynamics and Uncertainties [J].
Rehak, Branislav ;
Lynnyk, Volodymyr .
IEEE ACCESS, 2022, 10 :35352-35362
[45]   Measurement feedback disturbance decoupling in discrete-event systems [J].
Kaldmaee, Arvo ;
Kotta, Uelle ;
Shumsky, Alexey ;
Zhirabok, Alexey .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 25 (17) :3330-3348
[46]   Disturbance decoupling of nonlinear MISO systems by static measurement feedback [J].
Pothin, R ;
Moog, CH ;
Xia, XH .
SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, :369-373
[47]   Disturbance decoupling by state feedback for uncertain impulsive linear systems [J].
Conte, Giuseppe ;
Perdon, Anna Maria ;
Otsuka, Naohisa ;
Zattoni, Elena .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (10) :4729-4743
[48]   The disturbance decoupling problem for time-delay nonlinear systems [J].
Moog, CH ;
Castro-Linares, R ;
Velasco-Villa, M ;
Márquez-Martínez, LA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (02) :305-309
[49]   Disturbance Decoupling for a Class of Nonlinear Differential-Algebraic Systems [J].
Li Yuan ;
Wang Wentao .
ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, :620-624
[50]   Disturbance decoupling of linear time-varying singular systems [J].
Liu, XP ;
Ho, DWC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (02) :335-341