On partially minimum-phase systems and disturbance decoupling with stability

被引:1
作者
Mattioni, Mattia [1 ]
Hassan, Marwa [1 ]
Monaco, Salvatore [1 ]
Normand-Cyrot, Dorothee [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Ingn Informat Automat & Gestionale A, Via Ariosto 25, I-00185 Rome, Italy
[2] CNRS UMR 8506, L2S, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
关键词
Nonlinear control; Disturbance decoupling; Sampled-data systems; SAMPLED-DATA SYSTEMS; FEEDBACK; ZEROS; REJECTION; DYNAMICS; ORDER;
D O I
10.1007/s11071-019-04999-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we consider the problem of disturbance decoupling for a class of non-minimum-phase nonlinear systems. Based on the notion of partially minimum phaseness, we shall characterize all actions of disturbances which can be decoupled via a static state feedback while preserving stability of the internal residual dynamics. The proposed methodology is then extended to the sampled-data framework via multi-rate design to cope with the rising of the so-called sampling zero dynamics intrinsically induced by classical single-rate sampling.
引用
收藏
页码:583 / 598
页数:16
相关论文
共 50 条
[31]   Minimum phase properties of systems with a new signal reconstruction method [J].
Ou, Minghui ;
Liang, Shan ;
Zhang, Hao ;
Liu, Tong ;
Liang, Jing .
IFAC PAPERSONLINE, 2020, 53 (02) :610-615
[32]   Disturbance decoupling by measurement feedback for SISO nonlinear systems [J].
Xia, X ;
Moog, CH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (07) :1425-1429
[33]   Disturbance Decoupling in Hybrid Linear Systems With State Jumps [J].
Perdon, Anna Maria ;
Zattoni, Elena ;
Conte, Giuseppe .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (12) :6552-6559
[34]   Disturbance decoupling for nonlinear time-delay systems [J].
Marquez-Martinez, L. A. ;
Moog, C. H. .
ASIAN JOURNAL OF CONTROL, 2007, 9 (02) :190-194
[35]   Minimum-Phase Property of the Hemodynamic Response Function, and Implications for Granger Causality in fMRI [J].
Novelli, Leonardo ;
Barnett, Lionel ;
Seth, Anil K. ;
Razi, Adeel .
HUMAN BRAIN MAPPING, 2025, 46 (10)
[36]   Disturbance and input-output decoupling of singular systems [J].
Vafiadis, Dimitris ;
Karcanias, Nicos .
AUTOMATICA, 2012, 48 (08) :1650-1657
[37]   Disturbance decoupling for linear singular systems with time delay [J].
Feng Jun-e ;
Cui Peng .
PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, :71-75
[38]   A geometric approach for structured systems: Application to disturbance decoupling [J].
Commault, C ;
Dion, JM ;
Hovelaque, V .
AUTOMATICA, 1997, 33 (03) :403-409
[39]   Unknown Input Observer-based Output Regulation for Uncertain Minimum Phase Linear Systems Affected by a Periodic Disturbance [J].
Wang, Yang ;
Gong, Yizhou ;
Pin, Gilberto ;
Zhu, Fanglai ;
Serrani, Andrea ;
Parisini, Thomas .
2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, :2544-2551
[40]   Static disturbance-to-output decoupling for nonlinear systems with arbitrary disturbance relative degree [J].
Yang, Jun ;
Chen, Wen-Hua ;
Li, Shihua ;
Chen, Xisong .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2013, 23 (05) :562-577