On partially minimum-phase systems and disturbance decoupling with stability

被引:1
作者
Mattioni, Mattia [1 ]
Hassan, Marwa [1 ]
Monaco, Salvatore [1 ]
Normand-Cyrot, Dorothee [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Ingn Informat Automat & Gestionale A, Via Ariosto 25, I-00185 Rome, Italy
[2] CNRS UMR 8506, L2S, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
关键词
Nonlinear control; Disturbance decoupling; Sampled-data systems; SAMPLED-DATA SYSTEMS; FEEDBACK; ZEROS; REJECTION; DYNAMICS; ORDER;
D O I
10.1007/s11071-019-04999-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we consider the problem of disturbance decoupling for a class of non-minimum-phase nonlinear systems. Based on the notion of partially minimum phaseness, we shall characterize all actions of disturbances which can be decoupled via a static state feedback while preserving stability of the internal residual dynamics. The proposed methodology is then extended to the sampled-data framework via multi-rate design to cope with the rising of the so-called sampling zero dynamics intrinsically induced by classical single-rate sampling.
引用
收藏
页码:583 / 598
页数:16
相关论文
共 50 条
[21]   Disturbance decoupling in a class of linear systems [J].
Dorea, CET ;
Milani, BEA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) :1427-1431
[22]   Disturbance decoupling of switched linear systems [J].
Yurtseven, E. ;
Heemels, W. P. M. H. ;
Camlibel, M. K. .
SYSTEMS & CONTROL LETTERS, 2012, 61 (01) :69-78
[23]   Disturbance Decoupling of Switched Linear Systems [J].
Yurtseven, E. ;
Heemels, W. P. M. H. ;
Camlibel, M. K. .
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, :6475-6480
[24]   Disturbance decoupling in nonlinear hybrid systems [J].
Kaldmae, Arvo ;
Kotta, Ulle ;
Shumsky, Alexey ;
Zhirabok, Alexey .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2018, 28 :42-53
[25]   Disturbance Decoupling of Time Delay Systems [J].
Kaldmae, A. ;
Moog, C. H. .
ASIAN JOURNAL OF CONTROL, 2016, 18 (03) :1130-1134
[26]   Global robust disturbance attenuation for uncertain minimum phase nonlinear systems [J].
Su, WH ;
Xie, LH ;
de Souza, CE ;
Gong, ZM .
ROBUST CONTROL DESIGN (ROCODN'97): A PROCEEDINGS VOLUME FROM THE IFAC SYMPOSIUM, 1997, :315-320
[27]   Filtered-dynamic-inversion control for unknown minimum-phase systems with unknown-and-unmeasured disturbances [J].
Hoagg, Jesse B. ;
Seigler, T. M. .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (03) :449-468
[28]   GEOMETRIC CONTROL AND DISTURBANCE DECOUPLING FOR FRACTIONAL SYSTEMS [J].
Padula, Fabrizio ;
Ntogramatzidis, Lorenzo ;
Schmid, Robert ;
Loxton, Ryan .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (03) :1403-1428
[29]   Disturbance decoupling for descriptor systems by state feedback [J].
Chu, DL ;
Mehrmann, V .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (06) :1830-1858
[30]   Capability of ADRC for Minimum-Phase Plants with Unknown Orders and Uncertain Relative Degrees [J].
Zhao Chunzhe .
PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, :6121-6126