The finite volume method for Richards equation

被引:106
作者
Eymard, R
Gutnic, M
Hilhorst, D
机构
[1] Ecole Natl Ponts & Chaussees, F-77455 Marne la Vallee 2, France
[2] Univ Strasbourg 1, Inst Rech Math, F-67084 Strasbourg, France
[3] CNRS, Lab Math Anal Numer & EDP, F-91405 Orsay, France
[4] Univ Paris Sud, F-91405 Orsay, France
关键词
flow in porous media; Richards equation; finite volume methods; convergence of approximate solutions; discrete a priori estimates; Kolmogorov's theorem;
D O I
10.1023/A:1011547513583
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we prove the convergence of a finite volume scheme for the discretization of an elliptic-parabolic problem, namely Richards equation beta(P)(t) - div(K(beta(P)) x del (P + z)) = 0, together with Dirichlet boundary conditions and an initial condition. This is done by means of a priori estimates in L-2 and the use of Kolmogorov's theorem on relative compactness of subsets of L-2.
引用
收藏
页码:259 / 294
页数:36
相关论文
共 25 条
  • [1] ALT HW, 1983, MATH Z, V183, P311
  • [2] CO-VOLUME METHODS FOR DEGENERATE PARABOLIC PROBLEMS
    BAUGHMAN, LA
    WALKINGTON, NJ
    [J]. NUMERISCHE MATHEMATIK, 1993, 64 (01) : 45 - 67
  • [3] Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
  • [4] A GENERAL MASS-CONSERVATIVE NUMERICAL-SOLUTION FOR THE UNSATURATED FLOW EQUATION
    CELIA, MA
    BOULOUTAS, ET
    ZARBA, RL
    [J]. WATER RESOURCES RESEARCH, 1990, 26 (07) : 1483 - 1496
  • [5] Simulation of water flow and heat transfer in soils by means of a mixed finite element method
    Chounet, LM
    Hilhorst, D
    Jouron, C
    Kelanemer, Y
    Nicolas, P
    [J]. ADVANCES IN WATER RESOURCES, 1999, 22 (05) : 445 - 460
  • [6] Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
  • [7] Ekeland I., 1974, Analyse Convexe et Problemes Variationnels
  • [8] Eymard R, 1998, RAIRO-MATH MODEL NUM, V32, P747
  • [9] Eymard R., 1998, ACTA MATH U COMENIAN, V67, P181
  • [10] EYMARD R, IN PRESS HDB NUMERIC