The Relationship between Wormlike Micelle Scission Free Energy and Micellar Composition: The Case of Sodium Lauryl Ether Sulfate and Cocamidopropyl Betaine
被引:17
|
作者:
Wand, Charlie R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Dept Chem Engn & Analyt Sci, Manchester M13 9PL, Lancs, EnglandUniv Manchester, Dept Chem Engn & Analyt Sci, Manchester M13 9PL, Lancs, England
Wand, Charlie R.
[1
]
Panoukidou, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Dept Chem Engn & Analyt Sci, Manchester M13 9PL, Lancs, EnglandUniv Manchester, Dept Chem Engn & Analyt Sci, Manchester M13 9PL, Lancs, England
Panoukidou, Maria
[1
]
Del Regno, Annalaura
论文数: 0引用数: 0
h-index: 0
机构:
Sci Tech Daresbury, STFC Hartree Ctr, Warrington WA4 4AD, Cheshire, England
BASF SE, Mat Mol Modeling, D-67056 Ludwigshafen, GermanyUniv Manchester, Dept Chem Engn & Analyt Sci, Manchester M13 9PL, Lancs, England
The scission energy is the difference in free energy between two hemispherical caps and the cylindrical region of a wormlike micelle. This energy difference determines the logarithm of the average micelle length, which affects several macroscopic properties such as the viscosity of viscoelastic fluids. Here we use a recently published method by Wang et al. (Langmuir, 2018, 34, 1564-1573) to directly calculate the scission energy of micelles composed of monodisperse sodium lauryl ether sulfate (SLESnEO), an anionic surfactant. Utilizing dissipative particle dynamics (DPD), we perform a systematic study varying the number of ethoxyl groups (n) and salt concentration. The scission energy increases with increasing salt concentration, indicating that the formation of longer micelles is favored. We attribute this to the increased charge screening that reduces the repulsion between head groups. However, the scission energy decreases with increasing number of ethoxyl groups as the flexibility of the head group increases and the sodium ion becomes less tightly bound to the head group. We then extend the analysis to look at the effect of a common cosurfactant, cocamidopropyl betaine (CAPB), and find that its addition stabilizes wormlike micelles at a lower salt concentration.