LOCAL AND GLOBAL MINIMALITY RESULTS FOR A NONLOCAL ISOPERIMETRIC PROBLEM ON RN

被引:64
作者
Bonacini, M. [1 ]
Cristoferi, R. [1 ]
机构
[1] SISSA, I-34136 Trieste, Italy
关键词
nonlocal isoperimetric problem; minimality conditions; second variation; local minimizers; global minimizers; VOLUME-FRACTION LIMIT; I-LIMIT; MINIMIZERS; REGULARITY;
D O I
10.1137/130929898
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlocal isoperimetric problem defined in the whole space R-N, whose nonlocal part is given by a Riesz potential with exponent alpha is an element of(0, N - 1). We show that critical configurations with positive second variation are local minimizers and satisfy a quantitative inequality with respect to the L-1-norm. This criterion provides the existence of an (explicitly determined) critical threshold determining the interval of volumes for which the ball is a local minimizer, and it allows us to address several global minimality issues.
引用
收藏
页码:2310 / 2349
页数:40
相关论文
共 36 条
[1]   Minimality via Second Variation for a Nonlocal Isoperimetric Problem [J].
Acerbi, E. ;
Fusco, N. ;
Morini, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (02) :515-557
[3]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[4]   Stable regular critical points of the Mumford-Shah functional are local minimizers [J].
Bonacini, M. ;
Morini, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (03) :533-570
[5]   A second order minimality condition for the Mumford-Shah functional [J].
Cagnetti, F. ;
Mora, M. G. ;
Morini, M. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (01) :37-74
[6]   A QUANTITATIVE SECOND ORDER MINIMALITY CRITERION FOR CAVITIES IN ELASTIC BODIES [J].
Capriani, Giuseppe Maria ;
Julin, Vesa ;
Pisante, Giovanni .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) :1952-1991
[7]   On the first and second variations of a nonlocal isoperimetric problem [J].
Choksi, Rustum ;
Sternberg, Peter .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 611 :75-108
[8]   SMALL VOLUME-FRACTION LIMIT OF THE DIBLOCK COPOLYMER PROBLEM: II. DIFFUSE-INTERFACE FUNCTIONAL [J].
Choksi, Rustum ;
Peletier, Mark A. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) :739-763
[9]   SMALL VOLUME FRACTION LIMIT OF THE DIBLOCK COPOLYMER PROBLEM: I. SHARP-INTERFACE FUNCTIONAL [J].
Choksi, Rustum ;
Peletier, Mark A. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (03) :1334-1370
[10]   Droplet Minimizers of an Isoperimetric Problem with Long-Range Interactions [J].
Cicalese, Marco ;
Spadaro, Emanuele .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (08) :1298-1333