Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries

被引:165
作者
Wang, Pengzi [1 ]
Zhu, Xiaoshu [2 ]
Wang, Qiaoqiao [1 ]
Xu, Xin [1 ]
Zhou, Xiaosi [1 ]
Bao, Jianchun [1 ]
机构
[1] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Ctr Anal & Testing, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE ANODE; HIGH-CAPACITY ANODE; NITROGEN-DOPED CARBON; ULTRALONG CYCLE LIFE; ENERGY-STORAGE; POROUS CARBON; SUSTAINABLE ROUTE; LOW-COST; LITHIUM; INTERCALATION;
D O I
10.1039/c7ta00639j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries (SIBs) have received much attention for scalable electrical energy storage because of the abundance and wide availability of sodium resources. However, it is still unclear whether carbon anodes can realize large-scale commercial application in SIBs as in lithium-ion batteries. Recently, great attention has been devoted to hard carbon which has been treated as a promising choice. Herein, we observe that the turbostratic lattice of kelp-derived hard carbon (KHC) is repeatedly expandable and shrinkable upon cycling, where the interlayer distance varies between 3.9 and 4.3 angstrom. Such interlayer spacing dilation is highly reversible, giving rise to high rate capability (a stable capacity of 96 mA h g(-1) at 1000 mA g(-1)) and excellent cycling performance (205 mA h g(-1) after 300 cycles at 200 mA g(-1)). Furthermore, kelp-derived hard carbon exhibits a good specific capacity at potentials higher than 0.05 V, which make it an essentially dendrite-free anode for SIBs.
引用
收藏
页码:5761 / 5769
页数:9
相关论文
共 73 条
  • [1] New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon
    Bommier, Clement
    Surta, Todd Wesley
    Dolgos, Michelle
    Ji, Xiulei
    [J]. NANO LETTERS, 2015, 15 (09) : 5888 - 5892
  • [2] Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements
    Bommier, Clement
    Luo, Wei
    Gao, Wen-Yang
    Greaney, Alex
    Ma, Shengqian
    Ji, Xiulei
    [J]. CARBON, 2014, 76 : 165 - 174
  • [3] General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy
    Cançado, LG
    Takai, K
    Enoki, T
    Endo, M
    Kim, YA
    Mizusaki, H
    Jorio, A
    Coelho, LN
    Magalhaes-Paniago, R
    Pimenta, MA
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (16)
  • [4] Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications
    Cao, Yuliang
    Xiao, Lifen
    Sushko, Maria L.
    Wang, Wei
    Schwenzer, Birgit
    Xiao, Jie
    Nie, Zimin
    Saraf, Laxmikant V.
    Yang, Zhengguo
    Liu, Jun
    [J]. NANO LETTERS, 2012, 12 (07) : 3783 - 3787
  • [5] Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling
    Chen, Chaoji
    Wen, Yanwei
    Hu, Xianluo
    Ji, Xiulei
    Yan, Mengyu
    Mai, Liqiang
    Hu, Pei
    Shan, Bin
    Huang, Yunhui
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [6] Combination of Lightweight Elements and Nanostructured Materials for Batteries
    Chen, Jun
    Cheng, Fangyi
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (06) : 713 - 723
  • [7] Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors
    Choi, Nam-Soon
    Chen, Zonghai
    Freunberger, Stefan A.
    Ji, Xiulei
    Sun, Yang-Kook
    Amine, Khalil
    Yushin, Gleb
    Nazar, Linda F.
    Cho, Jaephil
    Bruce, Peter G.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) : 9994 - 10024
  • [8] Ultrafast Solvent-Assisted Sodium Ion Intercalation into Highly Crystalline Few-Layered Graphene
    Cohn, Adam P.
    Share, Keith
    Carter, Rachel
    Oakes, Landon
    Pint, Cary L.
    [J]. NANO LETTERS, 2016, 16 (01) : 543 - 548
  • [9] Negative electrodes for Na-ion batteries
    Dahbi, Mouad
    Yabuuchi, Naoaki
    Kubota, Kei
    Tokiwa, Kazuyasu
    Komaba, Shinichi
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (29) : 15007 - 15028
  • [10] Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors
    Ding, Jia
    Wang, Huanlei
    Li, Zhi
    Cui, Kai
    Karpuzov, Dimitre
    Tan, Xuehai
    Kohandehghan, Alireza
    Mitlin, David
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) : 941 - 955