Melnikov vector function for high-dimensional maps

被引:5
作者
Sun, JH
机构
[1] Mathematics Department, Nanjing University
关键词
maps; exponential dichotomy; Melnikov function; transversal homoclinic point;
D O I
10.1016/0375-9601(96)00263-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the exponential dichotomy and a unified geometrical method we calculate explicitly the Melnikov vector function assuring the existence of transversal homoclinic points for general perturbations of high-dimensional maps possessing a saddle connection, thus generalizing the results of Glasser et al. [SIAM J. Appl. Math. 49 (1989) 692] and Easton [Nonl. Anal. Theory Meth. Appl. 8 (1984) 1].
引用
收藏
页码:47 / 52
页数:6
相关论文
共 13 条
  • [1] A MELNIKOV VECTOR FOR N-DIMENSIONAL MAPPINGS
    BOUNTIS, T
    GORIELY, A
    KOLLMANN, M
    [J]. PHYSICS LETTERS A, 1995, 206 (1-2) : 38 - 48
  • [2] Chow S-N., 2012, METHODS BIFURCATION
  • [3] AN EXAMPLE OF BIFURCATION TO HOMOCLINIC ORBITS
    CHOW, SN
    HALE, JK
    MALLETPARET, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 37 (03) : 351 - 373
  • [5] MELNIKOV FUNCTION FOR TWO-DIMENSIONAL MAPPINGS
    GLASSER, ML
    PAPAGEORGIOU, VG
    BOUNTIS, TC
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) : 692 - 703
  • [6] McMillan E. M., 1971, Topics in Modern Physics, a tribute to E. V. Condon, P219
  • [7] Newhouse S.E., 1974, TOPOLOGY, V13, P9
  • [8] Palmer K. J., 1988, DYNAMICS REPORTED, V1, P265
  • [9] Sun J., 1994, SCI CHINA, V24, P1145
  • [10] SUN JH, 1994, SCI CHINA SER A, V37, P523