Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process

被引:67
作者
Guo, Hui [1 ]
Wu, Chunyang [2 ]
Xie, Jian [1 ,2 ]
Zhang, Shichao [3 ]
Cao, Gaoshao [1 ,2 ]
Zhao, Xinbing [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou, Zhejiang, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
ION BATTERY CATHODE; HYDROTHERMAL SYNTHESIS; CRYSTAL ORIENTATION; LITHIUM; CHALLENGES; MORPHOLOGY; MECHANISM; SIZE;
D O I
10.1039/c4ta01365d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Olivine-type LiMnPO4 has been considered as a promising cathode material for the next-generation highpower lithium ion batteries. Preparing high-performance LiMnPO4 cathodes by a simple approach has been a subject of much scientific inquiry for several years. Here, we report a simple solvothermal synthesis of LiMnPO4 nanocrystals using LiOH center dot H2O, H3PO4 and MnSO4 center dot H2O as the precursors and ethylene glycol as the reaction medium. We found that the ratio of the starting materials exerts a significant influence on the morphology, size and crystal orientation of LiMnPO4 nanocrystals. We confirmed the critical role of H+ concentration in altering the crystallization characteristics of LiMnPO4. The results showed that after carbon coating, the plate-like LiMnPO4, which was synthesized from the precursor with a LiOH/H3PO4/MnSO4 ratio of 3:1.1:1, exhibited the best electrochemical performance, yielding a discharge capacity of 108.2 mA h g(-1) at 10 degrees C and maintaining a discharge capacity of 133.5 mA h g(-1) after 100 cycles at 0.5 C. This simple, one-spot solvothermal preparation method sheds light on the synthesis of high-performance LiMnPO4 cathode material.
引用
收藏
页码:10581 / 10588
页数:8
相关论文
共 37 条
[1]  
[Anonymous], 2005, ANGEW CHEM
[2]   LiMnPO4 - A next generation cathode material for lithium-ion batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3518-3539
[3]   Synthesis and electrochemical performance of nanostructured LiMnPO4/C composites as lithium-ion battery cathode by a precipitation technique [J].
Cao, Yanbing ;
Duan, Jianguo ;
Hu, Guorong ;
Jiang, Feng ;
Peng, Zhongdong ;
Du, Ke ;
Guo, Hongwei .
ELECTROCHIMICA ACTA, 2013, 98 :183-189
[4]   Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries [J].
Choi, Daiwon ;
Xiao, Jie ;
Choi, Young Joon ;
Hardy, John S. ;
Vijayakumar, M. ;
Bhuvaneswari, M. S. ;
Liu, Jun ;
Xu, Wu ;
Wang, Wei ;
Yang, Zhenguo ;
Graff, Gordon L. ;
Zhang, Ji-Guang .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4560-4566
[5]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[6]   One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders [J].
Delacourt, C ;
Poizot, P ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
CHEMISTRY OF MATERIALS, 2004, 16 (01) :93-99
[7]   Hydrothermal and Solvothermal Process Towards Development of LiMPO4 (M = Fe, Mn) Nanomaterials for Lithium-Ion Batteries [J].
Devaraju, Murukanahally Kempaiah ;
Honma, Itaru .
ADVANCED ENERGY MATERIALS, 2012, 2 (03) :284-297
[8]   Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes [J].
Dinh, Hung-Cuong ;
Mho, Sun-il ;
Kang, Yongku ;
Yeo, In-Hyeong .
JOURNAL OF POWER SOURCES, 2013, 244 :189-195
[9]   Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K [J].
Dokko, Kaoru ;
Koizumi, Shohei ;
Nakano, Hiroyuki ;
Kanamura, Kiyoshi .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (45) :4803-4810
[10]   Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass [J].
Hu, Bo ;
Wang, Kan ;
Wu, Liheng ;
Yu, Shu-Hong ;
Antonietti, Markus ;
Titirici, Maria-Magdalena .
ADVANCED MATERIALS, 2010, 22 (07) :813-828