On a theorem of Bazilevic for areally mean p-valent functions attaining maximal growth on k rays

被引:4
作者
Dong, XH
机构
[1] Hunan Normal University,Department of Mathematics
关键词
Maximal Growth; Bounded Function; London Mathematical Society; Riemann Mapping; Multivalent Function;
D O I
10.1007/BF02773646
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let mu(p, k) denote the class of areally mean p-valent functions attaining maximal growth on k rays. The aim of this article is to get the sufficient and necessary condition for which Bazilevic's theorem holds for f is an element of mu(p, k).
引用
收藏
页码:327 / 337
页数:11
相关论文
共 7 条
  • [1] AHARONOV D, 1983, J LOND MATH SOC, V27, P277
  • [2] BAZILEVIC IE, 1967, MAT SBORNIK, V74, P135
  • [3] DONG XH, 1992, CHINESE SCI BULL, V37, P1774
  • [4] ASYMPTOTIC BEHAVIOUR OF AREALLY MEAN VALENT FUNCTIONS
    EKE, BG
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1967, 20 : 147 - &
  • [5] REMARKS ON AHLFORS DISTORTION THEOREM
    EKE, BG
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1967, 19 : 97 - &
  • [6] Hayman W. K., 1958, Multivalent Functions
  • [7] Pommerenke Ch., 1975, Univalent Functions