On fractional (g, f, n)-critical graphs

被引:0
|
作者
Liu, Shuli [1 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang, Peoples R China
来源
2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II | 2010年
关键词
graph; toughness; fractional; (g; f)-factor; f; n)-critical graph; N)-CRITICAL GRAPHS; TOUGHNESS; EXISTENCE; (G;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G be a graph with vertex set V(G). For any S subset of V(G) we use omega(G - S) to denote the number of components of G - S. The toughness of G, t(G), is defined as t(G) = min{vertical bar S vertical bar/omega(G - S)vertical bar S subset of V(G), omega(G - S) > 1} if G is not complete; otherwise, set t(G) = +infinity. In this paper, we consider the relationship between the toughness and fractional (g, f, n)-critical graphs. It is proved that a graph G is a (g, f, n) -critical graph if t(G) >= (b - 1)(b + n + 1)/a, where a, b, n are integers such that 1 <= a <= b and b >= (1 + root(4n + 5)/2.
引用
收藏
页码:242 / 245
页数:4
相关论文
共 50 条
  • [41] Toughness for Fractional (2, b, k)-Critical Covered Graphs
    Wang, Su-Fang
    Zhang, Wei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (01) : 197 - 205
  • [42] Toughness and fractional critical deleted graph
    Gao, Wei
    Wang, Weifan
    UTILITAS MATHEMATICA, 2015, 98 : 295 - 310
  • [43] Neighborhood condition for all fractional (g, f, n′, m)-critical deleted graphs
    Gao, Wei
    Zhang, Yunqing
    Chen, Yaojun
    OPEN PHYSICS, 2018, 16 (01): : 544 - 553
  • [44] A Sufficient Condition for the Existence of Restricted Fractional (g, f)-Factors in Graphs
    Zhou, S.
    Sun, Z.
    Pan, Q.
    PROBLEMS OF INFORMATION TRANSMISSION, 2020, 56 (04) : 332 - 344
  • [45] Toughness Condition for a Graph to be All Fractional (g, f, n)-Critical Deleted
    Gao, Wei
    Wang, Weifan
    Dimitrov, Darko
    FILOMAT, 2019, 33 (09) : 2735 - 2746
  • [46] Characterizations of maximum fractional (g, f)-factors of graphs
    Liu, Guizhen
    Zhang, Lanju
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (12) : 2293 - 2299
  • [47] Sharp conditions on fractional ID-(g, f)-factor-critical covered graphs
    Liu, Hongxia
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (05) : 3257 - 3265
  • [48] Neighborhood Conditions for Fractional ID-k-factor-critical Graphs
    Zhou, Si-zhong
    Sun, Zhi-ren
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (03): : 636 - 644
  • [49] FRACTIONAL (g, f)-FACTORS OF GRAPHS
    刘桂真
    张兰菊
    Acta Mathematica Scientia, 2001, (04) : 541 - 545
  • [50] Binding number condition for fractional (g, f, n′, m)-critical deleted graph in the new setting
    Wu, Jianzhang
    Gao, Wei
    UTILITAS MATHEMATICA, 2018, 109 : 129 - 137