On fractional (g, f, n)-critical graphs

被引:0
|
作者
Liu, Shuli [1 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang, Peoples R China
来源
2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II | 2010年
关键词
graph; toughness; fractional; (g; f)-factor; f; n)-critical graph; N)-CRITICAL GRAPHS; TOUGHNESS; EXISTENCE; (G;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G be a graph with vertex set V(G). For any S subset of V(G) we use omega(G - S) to denote the number of components of G - S. The toughness of G, t(G), is defined as t(G) = min{vertical bar S vertical bar/omega(G - S)vertical bar S subset of V(G), omega(G - S) > 1} if G is not complete; otherwise, set t(G) = +infinity. In this paper, we consider the relationship between the toughness and fractional (g, f, n)-critical graphs. It is proved that a graph G is a (g, f, n) -critical graph if t(G) >= (b - 1)(b + n + 1)/a, where a, b, n are integers such that 1 <= a <= b and b >= (1 + root(4n + 5)/2.
引用
收藏
页码:242 / 245
页数:4
相关论文
共 50 条
  • [31] A sufficient condition for a graph to be a fractional (a, b, n)-critical deleted graph
    Gao, Wei
    ARS COMBINATORIA, 2015, 119 : 377 - 390
  • [32] A New Sufficient Condition for a Graph To Be (g, f, n)-Critical
    Zhou, Sizhong
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (02): : 378 - 384
  • [33] A NEIGHBORHOOD CONDITION FOR GRAPHS TO HAVE RESTRICTED FRACTIONAL (g, f)-FACTORS
    Zhou, Sizhong
    Sun, Zhiren
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2021, 16 (01) : 138 - 149
  • [34] An existence theorem on fractional ID-(g, f)-factor-critical covered graphs
    Jiang, Jiashang
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (01) : 31 - 35
  • [35] NEW ISOLATED TOUGHNESS CONDITION FOR FRACTIONAL (g, f, n) - CRITICAL GRAPH
    Gao, Wei
    Wang, Weifan
    COLLOQUIUM MATHEMATICUM, 2017, 147 (01) : 55 - 65
  • [36] Isolated toughness and fractional (g, f)-factors of graphs
    Ma, Yinghong
    Wang, Aiyun
    Li, JianXiang
    ARS COMBINATORIA, 2009, 93 : 153 - 160
  • [37] A result on restricted fractional (g,f)-factors in graphs
    Zhou, Sizhong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (04): : 407 - 416
  • [38] Isolated Toughness and Fractional (g, f)-Factors of Graphs
    Zhou, Sizhong
    Duan, Ziming
    Pu, Bingyuan
    ARS COMBINATORIA, 2013, 110 : 239 - 247
  • [39] A Result on Fractional (a, b, k)-critical Covered Graphs
    Zhou, Si-zhong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (04): : 657 - 664
  • [40] Research on Fractional Critical Covered Graphs
    Wang, S.
    Zhang, W.
    PROBLEMS OF INFORMATION TRANSMISSION, 2020, 56 (03) : 270 - 277