On fractional (g, f, n)-critical graphs

被引:0
|
作者
Liu, Shuli [1 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang, Peoples R China
来源
2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II | 2010年
关键词
graph; toughness; fractional; (g; f)-factor; f; n)-critical graph; N)-CRITICAL GRAPHS; TOUGHNESS; EXISTENCE; (G;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G be a graph with vertex set V(G). For any S subset of V(G) we use omega(G - S) to denote the number of components of G - S. The toughness of G, t(G), is defined as t(G) = min{vertical bar S vertical bar/omega(G - S)vertical bar S subset of V(G), omega(G - S) > 1} if G is not complete; otherwise, set t(G) = +infinity. In this paper, we consider the relationship between the toughness and fractional (g, f, n)-critical graphs. It is proved that a graph G is a (g, f, n) -critical graph if t(G) >= (b - 1)(b + n + 1)/a, where a, b, n are integers such that 1 <= a <= b and b >= (1 + root(4n + 5)/2.
引用
收藏
页码:242 / 245
页数:4
相关论文
共 50 条
  • [21] A remark about fractional (f, n)-critical graphs
    Zhou, Sizhong
    Bian, Qiuxiang
    Liu, Hongxia
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01): : 365 - 371
  • [22] Binding number and minimum degree for the existence of (g,f,n)-critical graphs
    Liu H.
    Liu G.
    Journal of Applied Mathematics and Computing, 2009, 29 (1-2) : 207 - 216
  • [23] Fractional (g, f)-factors of graphs
    Liu, GZ
    Zhang, LJ
    ACTA MATHEMATICA SCIENTIA, 2001, 21 (04) : 541 - 545
  • [24] Binding numbers and fractional (g, f)-deleted graphs
    Zhou, Sizhong
    UTILITAS MATHEMATICA, 2014, 93 : 305 - 314
  • [25] A THEOREM ON FRACTIONAL ID-(g, f)-FACTOR-CRITICAL GRAPHS
    Zhou, Sizhong
    Sun, Zhiren
    Xu, Yang
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2015, 10 (02) : 31 - 38
  • [26] On (g, f, n)-critical graphs
    Li, JX
    Matsuda, H
    ARS COMBINATORIA, 2006, 78 : 71 - 82
  • [27] Independence Number, Connectivity and Fractional (g, f)-Factors in Graphs
    Bian, Qiuju
    Zhou, Sizhong
    FILOMAT, 2015, 29 (04) : 757 - 761
  • [28] Binding numbers and restricted fractional (g, f)-factors in graphs
    Zhou, Sizhong
    DISCRETE APPLIED MATHEMATICS, 2021, 305 : 350 - 356
  • [29] On fractional (g, f, m)-covered graphs
    Liu, Shuli
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II, 2010, : 246 - 248
  • [30] ALL FRACTIONAL (g, f) -FACTORS IN GRAPHS
    Sun, Zhiren
    Zhou, Sizhong
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2019, 20 (04): : 323 - 327