Stabilization Techniques in Finite Element Discretizations for Moment Approximations

被引:1
|
作者
Westerkamp, Armin [1 ]
Torrilhon, Manuel [1 ]
机构
[1] Rhein Westfal TH Aachen, Ctr Computat Engn Sci, D-52062 Aachen, Germany
来源
PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS | 2014年 / 1628卷
关键词
kinetic theory; moment closures; finite clement method;
D O I
10.1063/1.4902705
中图分类号
O59 [应用物理学];
学科分类号
摘要
The paper is concerned with the discretization of a linearized subsystem of the regularized 13-moment equations. These equations state an approximation of the Boltzmann equation as a result of applying moment methods. First, the derivation of the linearized equations is outlined, followed by the introduction of the numerical approach. The subsystem is of elliptic nature which makes finite elements the method of choice. The handling of saddle-point structures within the equations and non-standard boundary conditions are discussed. In this context, the concept of stabilization is presented and applied to the specific problem.
引用
收藏
页码:1016 / 1023
页数:8
相关论文
共 50 条
  • [31] TRUNCATION PRECONDITIONERS FOR STOCHASTIC GALERKIN FINITE ELEMENT DISCRETIZATIONS
    Bespalov, Alex
    Loghin, Daniel
    Youngnoi, Rawin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : S92 - S116
  • [32] Two Finite-Element Discretizations for Gradient Elasticity
    Zervos, A.
    Papanicolopulos, S. -A.
    Vardoulakis, I.
    JOURNAL OF ENGINEERING MECHANICS, 2009, 135 (03) : 203 - 213
  • [33] Three-scale finite element eigenvalue discretizations
    X. Gao
    F. Liu
    A. Zhou
    BIT Numerical Mathematics, 2008, 48
  • [34] ANISOTROPIC POLYGONAL AND POLYHEDRAL DISCRETIZATIONS IN FINITE ELEMENT ANALYSIS
    Weisser, Steffen
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (02): : 475 - 501
  • [35] THREE-SCALE FINITE ELEMENT EIGENVALUE DISCRETIZATIONS
    Gao, X.
    Liu, F.
    Zhou, A.
    BIT NUMERICAL MATHEMATICS, 2008, 48 (03) : 533 - 562
  • [36] LOCAL AND PARALLEL FINITE ELEMENT DISCRETIZATIONS FOR EIGENVALUE PROBLEMS
    Bi, Hai
    Yang, Yidu
    Li, Hao
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06): : A2575 - A2597
  • [37] Superconvergence of Finite Element Approximations to Eigenspaces
    S. I. Solov'ev
    Differential Equations, 2002, 38 : 752 - 753
  • [38] FINITE ELEMENT APPROXIMATIONS TO PARABOLIC PROBLEMS
    FIX, GJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 380 - &
  • [39] MIXED FINITE-ELEMENT APPROXIMATIONS
    ODEN, JT
    REDDY, JN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (03) : 393 - 404
  • [40] Finite element approximations in a nonLipschitz domain
    Acosta, Gabriel
    Armentano, Maria G.
    Duran, Ricardo G.
    Lombardi, Ariel L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (01) : 277 - 295