Inhibition of microRNA-429 attenuates oxygen-glucose deprivation/reoxygenation-induced neuronal injury by promoting expression of GATA-binding protein 4

被引:15
作者
Xiao, Jie [1 ]
Kong, Ranran [3 ]
Hu, Jingye [2 ]
机构
[1] Yuncheng Cent Hosp, Dept Neurol, Yuncheng, Peoples R China
[2] Yuncheng Cent Hosp, Dept Trauma & Orthopaed, 3690 Hedong St, Yuncheng 044000, Shanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Med Sch, Affiliated Hosp 2, Dept Thorac Surg, Xian, Shaanxi, Peoples R China
关键词
cerebral ischemia; reperfusion injury; GATA-binding protein 4; miR-429; oxygen-glucose deprivation and reoxygenation; CARDIAC MYOCYTE APOPTOSIS; TRANSCRIPTION FACTOR; DOWN-REGULATION; CEREBRAL-ISCHEMIA; CELL-GROWTH; DIFFERENTIATION; CONTRIBUTES; PATHWAYS; STROKE; MODEL;
D O I
10.1097/WNR.0000000000001023
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
MicroRNAs (miRNAs) have been documented as critical regulators in ischemia/reperfusion-induced neuronal death. A better understanding of miRNA-mediated molecular mechanisms in ischemia/reperfusion-induced neuronal death may provide therapeutic targets for cerebral ischemia/reperfusion injury. A growing body of evidence suggests that miR-429 is a apoptosis-related miRNA that is also induced by hypoxia. However, whether miR-429 is involved in regulating neuronal apoptosis during cerebral ischemia/reperfusion injury remains unclear. In this study, the effect of miR-429 on oxygen-glucose deprivation and reoxygenation (OGD/R)-induced neuronal injury was investigated in vitro. The results showed that miR-429 expression levels were upregulated in cultured neurons with OGD/R treatment. The downregulation of miR-429 significantly alleviated OGD/R-induced neuronal injury, whereas upregulation of miR-429 aggravated it. Bioinformatic analysis showed that miR-429 could directly target the 3-untranslated region of GATA-binding protein 4 (GATA4), which was verified by dual-luciferase reporter assay. Moreover, we found that miR-429 negatively regulated GATA4 expression. Overexpression of GATA4 also significantly alleviated OGD/R-induced neuronal injury. However, knockdown of GATA4 partially reversed the protective effect induced by miR-429 downregulation. Overall, our data showed that downregulation of miR-429 protected neurons against OGD/R-induced injury by promoting GATA4 and suggested a potential therapeutic target for the treatment of cerebral ischemia/reperfusion injury.
引用
收藏
页码:723 / 730
页数:8
相关论文
共 50 条
  • [41] Microglial and Neuronal Cell Pyroptosis Induced by Oxygen-Glucose Deprivation/Reoxygenation Aggravates Cell Injury via Activation of the Caspase-1/GSDMD Signaling Pathway
    Dong, Zhaofei
    Peng, Qingxia
    Pan, Kuang
    Lin, Weijye
    Wang, Yidong
    NEUROCHEMICAL RESEARCH, 2023, 48 (09) : 2660 - 2673
  • [42] Inhibition of microRNA-148b-3p alleviates oxygen-glucose deprivation/reoxygenation-induced apoptosis and oxidative stress in HT22 hippocampal neuron via reinforcing Sestrin2/Nrf2 signalling
    Du, Yin
    Ma, Xiaozhen
    Ma, Lei
    Li, Siyuan
    Zheng, Juan
    Lv, Junlin
    Cui, Long
    Lv, Jianrui
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2020, 47 (04) : 561 - 570
  • [43] MiR-142-3p Attenuates Oxygen Glucose Deprivation/Reoxygenation-Induced Injury by Targeting FBXO3 in Human Neuroblastoma SH-SY5Y Cells
    Li, Jin
    Ma, Lishan
    WORLD NEUROSURGERY, 2020, 136 : E149 - E157
  • [44] Z-ligustilide protects BV-2 microglial cells against oxygen-glucose deprivation/reoxygenation-induced injury by inhibiting NLRP3 inflammasome activation and pyroptosis
    Hu, Jia
    Wei, Jie
    Zeng, Cheng
    Duan, Fengqi
    Liu, Sijun
    Tan, Hongmei
    EUROPEAN JOURNAL OF INFLAMMATION, 2020, 18
  • [45] Long noncoding RNA SNHG1 protects brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-298 and upregulating SIK1 expression
    Zhou, Xinyu
    Xu, Bingchao
    Gu, Yan
    Ji, Niu
    Meng, Pin
    Dong, Lingdan
    BIOTECHNOLOGY LETTERS, 2021, 43 (06) : 1163 - 1174
  • [46] Geraniol attenuates oxygen-glucose deprivation/reoxygenation-induced ROS-dependent apoptosis and permeability of human brain microvascular endothelial cells by activating the Nrf-2/HO-1 pathway
    Yang, Ronggang
    Yan, Feng
    Shen, Jiangyi
    Wang, Tiancai
    Li, Menglong
    Ni, Hongzao
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2024, 56 (03) : 193 - 204
  • [47] LncRNA MALAT1 aggravates oxygen-glucose deprivation/reoxygenation-induced neuronal endoplasmic reticulum stress and apoptosis via the miR-195a-5p/HMGA1 axis
    Jia, Ying
    Yi, Lian
    Li, Qianqian
    Liu, Tingjiao
    Yang, Shanshan
    BIOLOGICAL RESEARCH, 2021, 54 (01)
  • [48] Resveratrol pretreatment attenuates injury and promotes proliferation of neural stem cells following oxygen-glucose deprivation/reoxygenation by upregulating the expression of Nrf2, HO-1 and NQO1 in vitro
    Shen, Changbo
    Cheng, Wei
    Yu, Pingping
    Wang, Li
    Zhou, Lulin
    Zeng, Li
    Yang, Qin
    MOLECULAR MEDICINE REPORTS, 2016, 14 (04) : 3646 - 3654
  • [49] Tetramethylpyrazine Attenuates Oxygen-glucose Deprivation-induced Neuronal Damage through Inhibition of the HIF-1α/BNIP3 Pathway: from Network Pharmacological Finding to Experimental Validation
    Xu, Shixin
    Zhang, Nannan
    Cao, Lanlan
    Liu, Lu
    Deng, Hao
    Hua, Shengyu
    Zhang, Yunsha
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (07) : 543 - 554
  • [50] Circ_0001360 absence alleviates oxygen-glucose deprivation/reoxygenation-induced SK-N-SH cell injury via controlling the miR-671-5p/BMF pathway
    Lu, Fang
    Mo, Linhong
    Liu, Aixian
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2024, 134 (05) : 492 - 502