Inhibition of microRNA-429 attenuates oxygen-glucose deprivation/reoxygenation-induced neuronal injury by promoting expression of GATA-binding protein 4

被引:15
|
作者
Xiao, Jie [1 ]
Kong, Ranran [3 ]
Hu, Jingye [2 ]
机构
[1] Yuncheng Cent Hosp, Dept Neurol, Yuncheng, Peoples R China
[2] Yuncheng Cent Hosp, Dept Trauma & Orthopaed, 3690 Hedong St, Yuncheng 044000, Shanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Med Sch, Affiliated Hosp 2, Dept Thorac Surg, Xian, Shaanxi, Peoples R China
关键词
cerebral ischemia; reperfusion injury; GATA-binding protein 4; miR-429; oxygen-glucose deprivation and reoxygenation; CARDIAC MYOCYTE APOPTOSIS; TRANSCRIPTION FACTOR; DOWN-REGULATION; CEREBRAL-ISCHEMIA; CELL-GROWTH; DIFFERENTIATION; CONTRIBUTES; PATHWAYS; STROKE; MODEL;
D O I
10.1097/WNR.0000000000001023
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
MicroRNAs (miRNAs) have been documented as critical regulators in ischemia/reperfusion-induced neuronal death. A better understanding of miRNA-mediated molecular mechanisms in ischemia/reperfusion-induced neuronal death may provide therapeutic targets for cerebral ischemia/reperfusion injury. A growing body of evidence suggests that miR-429 is a apoptosis-related miRNA that is also induced by hypoxia. However, whether miR-429 is involved in regulating neuronal apoptosis during cerebral ischemia/reperfusion injury remains unclear. In this study, the effect of miR-429 on oxygen-glucose deprivation and reoxygenation (OGD/R)-induced neuronal injury was investigated in vitro. The results showed that miR-429 expression levels were upregulated in cultured neurons with OGD/R treatment. The downregulation of miR-429 significantly alleviated OGD/R-induced neuronal injury, whereas upregulation of miR-429 aggravated it. Bioinformatic analysis showed that miR-429 could directly target the 3-untranslated region of GATA-binding protein 4 (GATA4), which was verified by dual-luciferase reporter assay. Moreover, we found that miR-429 negatively regulated GATA4 expression. Overexpression of GATA4 also significantly alleviated OGD/R-induced neuronal injury. However, knockdown of GATA4 partially reversed the protective effect induced by miR-429 downregulation. Overall, our data showed that downregulation of miR-429 protected neurons against OGD/R-induced injury by promoting GATA4 and suggested a potential therapeutic target for the treatment of cerebral ischemia/reperfusion injury.
引用
收藏
页码:723 / 730
页数:8
相关论文
共 50 条
  • [1] Effects of thymosin β4 on oxygen-glucose deprivation and reoxygenation-induced injury
    Ji, Hua
    Xu, Linhao
    Wang, Zheng
    Fan, Xinli
    Wu, Lihui
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2018, 41 (03) : 1749 - 1755
  • [2] Higenamine protects neuronal cells from oxygen-glucose deprivation/reoxygenation-induced injury
    Zhang, Yi
    Zhang, Jingjing
    Wu, Chuntao
    Guo, Sheng
    Su, Jing
    Zhao, Wendong
    Xing, Hongxia
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 3757 - 3764
  • [3] Suppression of microRNA-144-3p attenuates oxygen-glucose deprivation/reoxygenation-induced neuronal injury by promoting Brg1/Nrf2/ARE signaling
    Li, Yanru
    Zhao, Yongli
    Cheng, Mingkun
    Qiao, Yingjie
    Wang, Yongtao
    Xiong, Wancheng
    Yue, Wei
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2018, 32 (04)
  • [4] miR-363-3p attenuates the oxygen-glucose deprivation/reoxygenation-induced neuronal injury in vitro by targeting PDCD6IP
    Wang, Yihan
    Jin, Jiahui
    Xia, Zongxin
    Chen, Huisheng
    MOLECULAR MEDICINE REPORTS, 2022, 26 (05)
  • [5] Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro
    Li, Chang-Xiang
    Wang, Xue-Qian
    Cheng, Fa-Feng
    Yan, Xin
    Luo, Juan
    Wang, Qing-Guo
    NEURAL REGENERATION RESEARCH, 2019, 14 (11) : 1941 - 1949
  • [6] Suppression of miR-130a-3p Attenuates Oxygen-Glucose Deprivation/Reoxygenation-Induced Dendritic Spine Loss by Promoting APP
    Zhu, Liang
    Zhu, Lei
    Tan, Jinyun
    Chen, Kui
    Yu, Bo
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [7] DIXDC1 prevents oxygen-glucose deprivation/reoxygenation-induced injury in hippocampal neurons in vitro by promoting Wnt/β-catenin signaling
    Li, T.
    Wan, Y-C
    Sun, L-J
    Tao, S-J
    Chen, P.
    Liu, C-H
    Wang, K.
    Zhou, C-Y
    Zhao, G-Q
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2018, 22 (17) : 5678 - 5687
  • [8] Zhongfenggao Protects Brain Microvascular Endothelial Cells from Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Angiogenesis
    Huang, Shenghui
    Gong, Ting
    Zhang, Tengfei
    Wang, Xinfeng
    Cheng, Qianqian
    Li, Yanyi
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2019, 42 (02) : 222 - 230
  • [9] Silencing of circular RNA ANRIL attenuates oxygen-glucose deprivation and reoxygenation-induced injury in human brain microvascular endothelial cells by sponging miR-622
    Jiang, Su
    Zhao, Gaonian
    Lu, Jun
    Jiang, Min
    Wu, Zhenggang
    Huang, Yujing
    Huang, Jing
    Shi, Jinghua
    Jin, Jing
    Xu, Xinxuan
    Pu, Xuehua
    BIOLOGICAL RESEARCH, 2020, 53 (01)
  • [10] Effect and Mechanism of Ginsenoside Rg1 on Synaptic Plasticity of Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury
    Yan, Chen
    Ma, Yan
    Li, Lin
    Zhang, Meng
    Zhan, Junhua
    Fan, Xiang
    PHARMACOGNOSY MAGAZINE, 2020, 16 (71) : 630 - 636