Iterative domain decomposition meshless method modeling of incompressible viscous flows and conjugate heat transfer

被引:23
作者
Divo, E
Kassab, A
机构
[1] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA
[2] Univ Cent Florida, Dept Engn Technol, Orlando, FL 32816 USA
关键词
meshless methods; conjugate heat transfer; parallel computing;
D O I
10.1016/j.enganabound.2006.02.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop an effective domain decomposition meshless methodology for conjugate heat transfer problems modeled by convecting fully viscous incompressible fluid interacting with conducting solids. The meshless formulation for fluid flow modeling is based on a radial basis function interpolation using Hardy inverse Multiquadrics and a time-progression decoupling of the equations using a Helmholtz potential. The domain decomposition approach effectively reduces the conditioning numbers of the resulting algebraic systems, arising from convective and conduction modeling, while increasing efficiency of the solution process and decreasing memory requirements. Moreover, the domain decomposition approach is ideally suited for parallel computation. Numerical examples are presented to validate the approach by comparing the meshless solutions to finite volume method (FVM) solutions provided by a commercial CFD solver. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:465 / 478
页数:14
相关论文
共 30 条
[1]  
[Anonymous], 1980, SERIES COMPUTATIONAL, DOI [DOI 10.1201/9781482234213, 10.1201/9781482234213]
[2]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[3]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[4]  
Brebbia CA, 1992, DUAL RECIPROCITY BOU
[5]   Exponential convergence and H-c multiquadric collocation method for partial differential equations [J].
Cheng, AHD ;
Golberg, MA ;
Kansa, EJ ;
Zammito, G .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (05) :571-594
[6]   A meshless method for conjugate heat transfer problems [J].
Divo, E ;
Kassab, AJ .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2005, 29 (02) :136-149
[7]  
Divo E, 2003, NUMER HEAT TR B-FUND, V44, P417, DOI 10.1080/10407790390235622
[8]  
DIVO K, HTFED200456004 ASME
[9]   NUMERICAL PROCEDURES FOR SURFACE FITTING OF SCATTERED DATA BY RADIAL FUNCTIONS [J].
DYN, N ;
LEVIN, D ;
RIPPA, S .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (02) :639-659
[10]   SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS [J].
FRANKE, R .
MATHEMATICS OF COMPUTATION, 1982, 38 (157) :181-200