Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrodinger equation

被引:211
作者
Wang, Lei [1 ]
Zhang, Jian-Hui [2 ]
Wang, Zi-Qi [2 ]
Liu, Chong [3 ]
Li, Min [1 ]
Qi, Feng-Hua [4 ]
Guo, Rui [5 ]
机构
[1] North China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Sch Energy Power & Mech Engneering, Beijing 102206, Peoples R China
[3] NW Univ Xian, Sch Phys, Xian 710069, Peoples R China
[4] Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
[5] Taiyuan Univ Technol, Sch Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
ROGUE WAVES; OPTICAL SOLITONS;
D O I
10.1103/PhysRevE.93.012214
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the nonlinear waves on constant backgrounds of the higher-order generalized nonlinear Schrodinger (HGNLS) equation describing the propagation of ultrashort optical pulse in optical fibers. We derive the breather, rogue wave, and semirational solutions of the HGNLS equation. Our results show that these three types of solutions can be converted into the nonpulsating soliton solutions. In particular, we present the explicit conditions for the transitions between breathers and solitons with different structures. Further, we investigate the characteristics of the collisions between the soliton and breathers. Especially, based on the semirational solutions of the HGNLS equation, we display the novel interactions between the rogue waves and other nonlinear waves. In addition, we reveal the explicit relation between the transition and the distribution characteristics of the modulation instability growth rate.
引用
收藏
页数:12
相关论文
共 60 条
[1]  
Ablowitz M.J., 2004, LONDON MATH SOC LECT
[2]  
Agrawal G.P., 2002, Nonlinear fiber optics
[3]   How to excite a rogue wave [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICAL REVIEW A, 2009, 80 (04)
[4]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[5]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[6]   Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation [J].
Azzouzi, F. ;
Triki, H. ;
Mezghiche, K. ;
El Akrmi, A. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (03) :1304-1307
[7]   Baseband modulation instability as the origin of rogue waves [J].
Baronio, Fabio ;
Chen, Shihua ;
Grelu, Philippe ;
Wabnitz, Stefan ;
Conforti, Matteo .
PHYSICAL REVIEW A, 2015, 91 (03)
[8]   Vector Rogue Waves and Baseband Modulation Instability in the Defocusing Regime [J].
Baronio, Fabio ;
Conforti, Matteo ;
Degasperis, Antonio ;
Lombardo, Sara ;
Onorato, Miguel ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)
[9]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[10]   Multifilamentation of powerful optical pulses in silica [J].
Berge, L. ;
Mauger, S. ;
Skupin, S. .
PHYSICAL REVIEW A, 2010, 81 (01)