Bessel functions;
Bessel zeta functions;
bell polynomials;
D O I:
10.1142/S1793042114500249
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The series expansion of a power of the modified Bessel function of the first kind is studied. This expansion involves a family of polynomials introduced by C. Bender et al. New results on these polynomials established here include recurrences in terms of Bell polynomials evaluated at values of the Bessel zeta function. A probabilistic version of an identity of Euler yields additional recurrences. Connections to the umbral formalism on Bessel functions introduced by Cholewinski are established.
机构:
Univ Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USAUniv Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA
Berndt, Bruce C.
Dixit, Atul
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Gandhinagar, Discipline Math, Gandhinagar 382355, Gujarat, IndiaUniv Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA
Dixit, Atul
Kim, Sun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA
Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, GermanyUniv Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA
Kim, Sun
Zaharescu, Alexandru
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA
Romanian Acad, Simion Stoilow Inst Math, POB 1-764, RO-014700 Bucharest, RomaniaUniv Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA