On polynomials connected to powers of Bessel functions

被引:10
|
作者
Moll, Victor H. [1 ]
Vignat, Christophe [1 ,2 ]
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[2] Univ Orsay, LSS Supelec, Paris, France
基金
美国国家科学基金会;
关键词
Bessel functions; Bessel zeta functions; bell polynomials;
D O I
10.1142/S1793042114500249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The series expansion of a power of the modified Bessel function of the first kind is studied. This expansion involves a family of polynomials introduced by C. Bender et al. New results on these polynomials established here include recurrences in terms of Bell polynomials evaluated at values of the Bessel zeta function. A probabilistic version of an identity of Euler yields additional recurrences. Connections to the umbral formalism on Bessel functions introduced by Cholewinski are established.
引用
收藏
页码:1245 / 1257
页数:13
相关论文
共 50 条
  • [21] An infinite integral of Bessel functions
    Kolbig, KS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 67 (01) : 181 - 183
  • [22] On the common zeros of Bessel functions
    Petropoulou, EN
    Siafarikas, PD
    Stabolas, ID
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) : 387 - 393
  • [23] Generalized series of Bessel functions
    Al-Jarrah, A
    Dempsey, KM
    Glasser, ML
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 143 (01) : 1 - 8
  • [24] Polynomial approximations to Bessel functions
    Millane, RP
    Eads, JL
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (06) : 1398 - 1400
  • [25] Electrostatics and zeros of Bessel functions
    Muldoon, ME
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 65 (1-3) : 299 - 308
  • [26] On the Order Derivatives of Bessel Functions
    T. M. Dunster
    Constructive Approximation, 2017, 46 : 47 - 68
  • [27] On the zeros of derivatives of Bessel functions
    Frantzis, Dimitris A.
    Kokologiannaki, Chrysi G.
    Petropoulou, Eugenia N.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (5-6) : 330 - 338
  • [28] Differential inequalities and Bessel functions
    Baricz, Arpad
    Ponnusamy, Saminathan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) : 558 - 567
  • [29] NUMERICAL CALCULATION OF BESSEL FUNCTIONS
    Schwartz, Charles
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (12):
  • [30] Neumann series of Bessel functions
    Baricz, Arpad
    Jankov, Dragana
    Pogany, Tibor K.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (07) : 529 - 538