Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus

被引:76
作者
Ings, Jennifer [1 ]
Mur, Luis A. J. [1 ]
Robson, Paul R. H. [1 ]
Bosch, Maurice [1 ]
机构
[1] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3EB, Dyfed, Wales
来源
FRONTIERS IN PLANT SCIENCE | 2013年 / 4卷
基金
英国生物技术与生命科学研究理事会;
关键词
Miscanthus; drought; water deficit; physiology; metabolite profiling; stress; bioenergy; DROUGHT STRESS; FLUORESCENCE TRANSIENT; PROLINE ACCUMULATION; CLIMATE-CHANGE; YIELD; LEAF; PRODUCTIVITY; TOLERANCE; GENOTYPES; PLANTS;
D O I
10.3389/fpls.2013.00468
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
High yielding perennial biomass crops of the species Miscanthus are widely recognized as one of the most promising lignocellulosic feedstocks for the production of bioenergy and bioproducts. Miscanthus is a C-4 grass and thus has relatively high water use efficiency. Cultivated Miscanthus comprises primarily of a single clone, Miscanthus x giganteus, a sterile hybrid between M. sacchariflorus and M. sinensis. M. x giganteus is high yielding and expresses desirable combinations of many traits present in the two parental species types; however, it responds poorly to low water availability. To identify the physiological basis of the response to water stress in M. x giganteus and to identify potential targets for breeding improvements we characterized the physiological responses to water-deficit stress in a pot experiment. The experiment has provided valuable insights into the temporal aspects of drought-induced responses of M. x giganteus. Withholding water resulted in marked changes in plant physiology with growth-associated traits among the first affected, the most rapid response being a decline in the rate of stem elongation. A reduction in photosynthetic performance was among the second set of changes observed; indicated by a decrease in stomatal conductance followed by decreases in chlorophyll fluorescence and chlorophyll content. Measures reflecting the plant water status were among the last affected by the drought treatment. Metabolite analysis indicated that proline was a drought stress marker in M. x giganteus, metabolites in the proline synthesis pathway were more abundant when stomatal conductance decreased and dry weight accumulation ceased. The outcomes of this study in terms of drought-induced physiological changes, accompanied by a proof-of-concept metabolomics investigation, provide a platform for identifying targets for improved drought-tolerance of the Miscanthus bioenergy crop.
引用
收藏
页数:12
相关论文
共 61 条
[1]   Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea [J].
Allwood, JW ;
Ellis, DI ;
Heald, JK ;
Goodacre, R ;
Mur, LAJ .
PLANT JOURNAL, 2006, 46 (03) :351-368
[2]   Plant breeding and drought in C3 cereals:: What should we breed for? [J].
Araus, JL ;
Slafer, GA ;
Reynolds, MP ;
Royo, C .
ANNALS OF BOTANY, 2002, 89 :925-940
[3]   The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration? [J].
Benesova, Monika ;
Hola, Dana ;
Fischer, Lukas ;
Jedelsky, Petr L. ;
Hnilicka, Frantisek ;
Wilhelmova, Nada ;
Rothova, Olga ;
Kocova, Marie ;
Prochazkova, Dagmar ;
Honnerova, Jana ;
Fridrichova, Lenka ;
Hnilickova, Helena .
PLOS ONE, 2012, 7 (06)
[4]   PLANT PRODUCTIVITY AND ENVIRONMENT [J].
BOYER, JS .
SCIENCE, 1982, 218 (4571) :443-448
[5]   Cellulosic Biofuels [J].
Carroll, Andrew ;
Somerville, Chris .
ANNUAL REVIEW OF PLANT BIOLOGY, 2009, 60 :165-182
[6]   Drought tolerance improvement in crop plants: An integrated view from breeding to genomics [J].
Cattivelli, Luigi ;
Rizza, Fulvia ;
Badeck, Franz-W. ;
Mazzucotelli, Elisabetta ;
Mastrangelo, Anna M. ;
Francia, Enrico ;
Mare, Caterina ;
Tondelli, Alessandro ;
Stanca, A. Michele .
FIELD CROPS RESEARCH, 2008, 105 (1-2) :1-14
[7]   Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage [J].
Centritto, Mauro ;
Lauteri, Marco ;
Monteverdi, Maria Cristina ;
Serraj, Rachid .
JOURNAL OF EXPERIMENTAL BOTANY, 2009, 60 (08) :2325-2339
[8]   Understanding plant responses to drought - from genes to the whole plant [J].
Chaves, MM ;
Maroco, JP ;
Pereira, JS .
FUNCTIONAL PLANT BIOLOGY, 2003, 30 (03) :239-264
[9]   Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index [J].
Clark, AJ ;
Landolt, W ;
Bucher, JB ;
Strasser, RJ .
ENVIRONMENTAL POLLUTION, 2000, 109 (03) :501-507
[10]   Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply [J].
Clifton-Brown, JC ;
Lewandowski, I .
ANNALS OF BOTANY, 2000, 86 (01) :191-200