The First Eigenvalue of the Kohn-Laplace Operator in the Heisenberg Group

被引:2
作者
Gamara, Najoua [1 ]
Makni, Akram [2 ]
机构
[1] Taibah Univ, Coll Sci, Medina, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, Tunis, Tunisia
关键词
Kohn-Laplace operator; first eigenvalue; harmonic radius; harmonic transplantation; Green's function; Heisenberg group; HARMONIC TRANSPLANTATION; INEQUALITY;
D O I
10.1007/s00009-017-0851-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by extending the notions of harmonic transplantation and harmonic radius in the Heisenberg group, we give an upper bound for the first eigenvalue for the following Dirichlet problem: (P Omega) {-Delta(H1) u = lambda u in Omega u = 0 on phi Omega, where Omega is a regular bounded domain of H-1 and Delta(H1) is the Kohn-Laplace operator. Using a result of Pansu which gives a relation between the volume of O and the perimeter of its boundary, we prove that lambda(1)(Omega) <= -C-Omega -l(11)(2)/ma(chi epsilon Omega) r(Omega)(2)(xi) where l(11) is the first strictly positive zero of the Bessel function of first kind and order 1, CO is a constant depending of Omega, and r(Omega)(xi) is the harmonic radius of Omega at a point xi of Omega.
引用
收藏
页数:24
相关论文
共 24 条
[1]   Harmonic radius and concentration of energy; Hyperbolic radius and Liouville's equations Delta U=e(U) and Delta U=Un-2/n+2 [J].
Bandle, C ;
Flucher, M .
SIAM REVIEW, 1996, 38 (02) :191-238
[2]   Green's function, harmonic transplantation and best Sobolev constant in spaces of constant curvature [J].
Bandle, C ;
Brillard, A ;
Flucher, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (03) :1103-1128
[4]  
Capogna L., 1994, COMMUN ANAL GEOM, V2, P203, DOI DOI 10.4310/CAG.1994.v2.n2.a2
[5]  
Chavel I, 1995, RIEMANIANN GEOMETRY
[6]   Sub-Riemannian calculus on hypersurfaces in Carnot groups [J].
Danielli, D. ;
Garofalo, N. ;
Nhieu, D. M. .
ADVANCES IN MATHEMATICS, 2007, 215 (01) :292-378
[7]  
Franchi B, 2001, MATH ANN, V321, P479
[8]  
Gamara N, 2011, ADV NONLINEAR STUD, V11, P593
[9]   THE DIRICHLET PROBLEM FOR SUBLAPLACIANS ON NILPOTENT LIE-GROUPS - GEOMETRIC CRITERIA FOR REGULARITY [J].
HANSEN, W ;
HUEBER, H .
MATHEMATISCHE ANNALEN, 1987, 276 (04) :537-547