Contextual Information-Based Multichannel Synthetic Aperture Radar Interferometry [Addressing DEM reconstruction using contextual information]

被引:63
作者
Baselice, Fabio [1 ,2 ]
Ferraioli, Giampaolo
Pascazio, Vito [2 ,3 ,4 ]
Schirinzi, Gilda [2 ,5 ,6 ,7 ]
机构
[1] Italian Consortium Telecommun CNIT, Pisa, Italy
[2] Univ Napoli Parthenope, Naples, Italy
[3] Univ Napoli Parthenope, Dept Engn, Naples, Italy
[4] Italian Consortium Telecommun, Natl Lab Multimedia Commun, Naples, Italy
[5] Univ Naples Federico II, Dept Elect Engn, Naples, Italy
[6] Italian Natl Council Res, Inst Ric Elettromagnetismo & Componenti Ellectron, Laquila, Italy
[7] Univ Cassino, Cassino, Italy
关键词
SAR INTERFEROMETRY; PHASE; ELEVATION; SYSTEMS;
D O I
10.1109/MSP.2014.2312282
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Interferometric synthetic aperture radar (InSAR) systems are capable of providing an estimate of the digital elevation model (DEM) of the imaged ground scene. This is usually done by means of a phase unwrapping (PU) operation. In the absence of additional regularity constraints, PU is an ill-posed problem, because the solution is not unique. Multichannel (MCh) techniques, using stacks of images of the same scene, can be used for restoring the solution uniqueness and reducing the effect of phase noise. Moreover, statistical techniques exploiting the contextual information contained in the data can provide satisfactory results. In this article, an overview of the main MCh statistical DEM reconstruction methods, developed both in the classical and in the Bayesian estimation framework, is presented. In particular, the effectiveness of the exploitation of contextual statistical models is shown by means of numerical experiments on simulated and real data sets. © 2014 IEEE.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 30 条
[1]  
[Anonymous], 1986, Interferometry and synthesis in radio astronomy
[2]   Synthetic aperture radar interferometry [J].
Bamler, R ;
Hartl, P .
INVERSE PROBLEMS, 1998, 14 (04) :R1-R54
[3]  
Bamler R, 2004, INT GEOSCI REMOTE SE, P980
[4]   Integrated Denoising and Unwrapping of InSAR Phase Based on Markov Random Fields [J].
Chen, Runpu ;
Yu, Weidong ;
Wang, Robert ;
Liu, Gang ;
Shao, Yunfeng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (08) :4473-4485
[5]   Multichannel interferometric SAR phase unwrapping using extended Kalman Smoother [J].
Chirico, Davide ;
Schirinzi, Gilda .
INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2013, 5 (03) :429-436
[6]   A novel phase unwrapping method based on network programming [J].
Costantini, M .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (03) :813-821
[7]   The ZπM algorithm:: A method for interferometric image reconstruction in SAR/SAS [J].
Dias, JMB ;
Leitao, JMN .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2002, 11 (04) :408-422
[8]  
Eineder M., 2002, APPL NUMER MATH, V43, P359
[9]   Multichannel Phase Unwrapping With Graph Cuts [J].
Ferraioli, Giampaolo ;
Shabou, Aymen ;
Tupin, Florence ;
Pascazio, Vito .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (03) :562-566
[10]   A Bayesian filtering technique for SAR interferometric phase fields [J].
Ferraiuolo, G ;
Poggi, G .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (10) :1368-1378