POLYNOMIAL PRECONDITIONED GMRES AND GMRES-DR

被引:15
|
作者
Liu, Quan [1 ]
Morgan, Ronald B. [2 ]
Wilcox, Walter [1 ]
机构
[1] Baylor Univ, Dept Phys, Waco, TX 76798 USA
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2015年 / 37卷 / 05期
基金
美国国家科学基金会;
关键词
linear equations; eigenvalues; polynomial preconditioning; GMRES; GMRES-DR; deflation; QCD; NONSYMMETRIC LINEAR-SYSTEMS; RESTARTED ITERATIVE METHODS; KRYLOV SUBSPACES; ALGORITHM; MATRICES; SOLVERS; IMPLEMENTATION; EQUATIONS; DEFLATION;
D O I
10.1137/140968276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We look at solving large nonsymmetric systems of linear equations using polynomial preconditioned Krylov methods. We give a simple way to find the polynomial. It is shown that polynomial preconditioning can significantly improve restarted GMRES for difficult problems, and the reasons for this are examined. Stability is discussed, and algorithms are given for increased stability. Next, we apply polynomial preconditioning to GMRES with deflated restarting. It is shown that this is worthwhile for sparse matrices and for problems with many small eigenvalues. Multiple right-hand sides are also considered.
引用
收藏
页码:S407 / S428
页数:22
相关论文
共 50 条
  • [41] Improving the accuracy of GMRES with deflated restarting
    Roellin, S.
    Fichtner, W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01): : 232 - 245
  • [42] Theoretical and numerical comparisons of GMRES and WZ-GMRES
    Chen, GZ
    Jia, ZX
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (8-9) : 1335 - 1350
  • [43] Preconditioned GMRES method for a class of Toeplitz linear systems in fractional eigenvalue problems
    Qian Zuo
    Ying He
    Computational and Applied Mathematics, 2020, 39
  • [44] Preconditioned GMRES algorithm for the boundary element analysis of the thin plate bending problem
    Chen J.
    Xiao H.
    Gao G.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2018, 39 (11): : 1809 - 1815
  • [45] A combined reordering procedure for preconditioned GMRES applied to solving equations using Lagrange multiplier method
    Hu, Zixiang
    Wang, Zhenmin
    Zhang, Shi
    Zhang, Yun
    Zhou, Huamin
    ENGINEERING COMPUTATIONS, 2014, 31 (07) : 1283 - 1304
  • [46] Preconditioned GMRES method for a class of Toeplitz linear systems in fractional eigenvalue problems
    Zuo, Qian
    He, Ying
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [47] An Investigation of Restarted GMRES Method by Using Flexible Starting Vectors
    Niu, Qiang
    Lu, Lin-Zhang
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2010, 3 (03) : 338 - 351
  • [48] CGS/GMRES(k): AN ADAPTIVE PRECONDITIONED CGS ALGORITHM FOR NONSYMMETRIC LINEAR SYSTEMS
    曹海燕
    李兴伟
    "NumericalMathematicsAJournalofChineseUniversities(EnglishSeries)N", 1998, (02) : 145 - 158
  • [49] Implicitly restarted and deflated GMRES
    C. Le Calvez
    B. Molina
    Numerical Algorithms, 1999, 21 : 261 - 285
  • [50] Expressions and Bounds for the GMRES Residual
    I. C. F. Ipsen
    BIT Numerical Mathematics, 2000, 40 : 524 - 535