POLYNOMIAL PRECONDITIONED GMRES AND GMRES-DR

被引:15
|
作者
Liu, Quan [1 ]
Morgan, Ronald B. [2 ]
Wilcox, Walter [1 ]
机构
[1] Baylor Univ, Dept Phys, Waco, TX 76798 USA
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2015年 / 37卷 / 05期
基金
美国国家科学基金会;
关键词
linear equations; eigenvalues; polynomial preconditioning; GMRES; GMRES-DR; deflation; QCD; NONSYMMETRIC LINEAR-SYSTEMS; RESTARTED ITERATIVE METHODS; KRYLOV SUBSPACES; ALGORITHM; MATRICES; SOLVERS; IMPLEMENTATION; EQUATIONS; DEFLATION;
D O I
10.1137/140968276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We look at solving large nonsymmetric systems of linear equations using polynomial preconditioned Krylov methods. We give a simple way to find the polynomial. It is shown that polynomial preconditioning can significantly improve restarted GMRES for difficult problems, and the reasons for this are examined. Stability is discussed, and algorithms are given for increased stability. Next, we apply polynomial preconditioning to GMRES with deflated restarting. It is shown that this is worthwhile for sparse matrices and for problems with many small eigenvalues. Multiple right-hand sides are also considered.
引用
收藏
页码:S407 / S428
页数:22
相关论文
共 50 条
  • [21] GPU-accelerated Preconditioned GMRES Solver
    Yang, Bo
    Liu, Hui
    Chen, Zhangxin
    Tian, Xuhong
    2016 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY), IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC), AND IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2016, : 280 - 285
  • [22] An efficient GPU version of the preconditioned GMRES method
    Aliaga, Jose I.
    Dufrechou, Ernesto
    Ezzatti, Pablo
    Quintana-Orti, Enrique S.
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (03): : 1455 - 1469
  • [23] On the block GMRES method with deflated restarting
    Lin, Yiqin
    Li, Wenbo
    Bao, Liang
    Wu, Qinghua
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) : 2146 - 2154
  • [24] Restarted block-GMRES with deflation of eigenvalues
    Morgan, RB
    APPLIED NUMERICAL MATHEMATICS, 2005, 54 (02) : 222 - 236
  • [25] Effectiveness of GMRES-DR and OSP-ILUC for wave diffraction analysis of a very large floating structure (VLFS)
    Makihata, N
    Utsunomiya, T
    Watanabe, E
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (01) : 49 - 58
  • [26] Preconditioned GMRES solver on multiple-GPU architecture
    Yang, Bo
    Liu, Hui
    Chen, Zhangxin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (04) : 1076 - 1095
  • [27] A note on preconditioned GMRES for solving singular linear systems
    Zhang, Naimin
    BIT NUMERICAL MATHEMATICS, 2010, 50 (01) : 207 - 220
  • [28] A FLEXIBLE INNER-OUTER PRECONDITIONED GMRES ALGORITHM
    SAAD, Y
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (02): : 461 - 469
  • [29] GMRES vs ideal GMRES
    Toh, KC
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (01) : 30 - 36
  • [30] Deflated GMRES for systems with multiple shifts and multiple right-hand sides
    Darnell, Dean
    Morgan, Ronald B.
    Wilcox, Walter
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (10) : 2415 - 2434