POLYNOMIAL PRECONDITIONED GMRES AND GMRES-DR

被引:15
|
作者
Liu, Quan [1 ]
Morgan, Ronald B. [2 ]
Wilcox, Walter [1 ]
机构
[1] Baylor Univ, Dept Phys, Waco, TX 76798 USA
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2015年 / 37卷 / 05期
基金
美国国家科学基金会;
关键词
linear equations; eigenvalues; polynomial preconditioning; GMRES; GMRES-DR; deflation; QCD; NONSYMMETRIC LINEAR-SYSTEMS; RESTARTED ITERATIVE METHODS; KRYLOV SUBSPACES; ALGORITHM; MATRICES; SOLVERS; IMPLEMENTATION; EQUATIONS; DEFLATION;
D O I
10.1137/140968276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We look at solving large nonsymmetric systems of linear equations using polynomial preconditioned Krylov methods. We give a simple way to find the polynomial. It is shown that polynomial preconditioning can significantly improve restarted GMRES for difficult problems, and the reasons for this are examined. Stability is discussed, and algorithms are given for increased stability. Next, we apply polynomial preconditioning to GMRES with deflated restarting. It is shown that this is worthwhile for sparse matrices and for problems with many small eigenvalues. Multiple right-hand sides are also considered.
引用
收藏
页码:S407 / S428
页数:22
相关论文
共 50 条
  • [1] WEIGHTED INNER PRODUCTS FOR GMRES AND GMRES-DR
    Embree, Mark
    Morgan, Ronald B.
    Nguyen, Huy V.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S610 - S632
  • [2] Restarted GMRES preconditioned by deflation
    Erhel, J
    Burrage, K
    Pohl, B
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 69 (02) : 303 - 318
  • [3] Toward efficient polynomial preconditioning for GMRES
    Loe, Jennifer A.
    Morgan, Ronald B.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (04)
  • [4] PROXY-GMRES: PRECONDITIONING VIA GMRES IN POLYNOMIAL SPACE
    Ye, Xin
    Xi, Yuanzhe
    Saad, Yousef
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (03) : 1248 - 1267
  • [5] Bifurcation detection with the (un)preconditioned GMRES(m)
    Spyropoulos, A
    Palyvos, JA
    Boudouvis, AG
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (42-44) : 4707 - 4716
  • [6] On the performance of various adaptive preconditioned GMRES strategies
    Burrage, K
    Erhel, J
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1998, 5 (02) : 101 - 121
  • [7] A note on preconditioned GMRES solver
    Zou, J
    Kim, CH
    PROCEEDINGS OF THE SIXTH (1996) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL III, 1996, 1996, : 44 - 49
  • [8] A preconditioned and extrapolation-accelerated GMRES method for PageRank
    Pu, Bing-Yuan
    Huang, Ting-Zhu
    Wen, Chun
    APPLIED MATHEMATICS LETTERS, 2014, 37 : 95 - 100
  • [9] GMRES and the minimal polynomial
    Campbell, SL
    Ipsen, ICF
    Kelley, CT
    Meyer, CD
    BIT, 1996, 36 (04): : 664 - 675
  • [10] A POLYNOMIAL PRECONDITIONER FOR THE GMRES ALGORITHM
    VANGIJZEN, MB
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 59 (01) : 91 - 107