On using Carmichael numbers for public key encryption systems

被引:0
作者
Pinch, RGE [1 ]
机构
[1] Queens Coll, Cambridge CB3 9ET, England
来源
CRYPTOGRAPHY AND CODING, PROCEEDINGS | 1997年 / 1355卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the inadvertent use of a Carmichael number instead of a prime factor in the modulus of an RSA cryptosystem is Likely to make the system fatally vulnerable, but that such numbers may be detected.
引用
收藏
页码:265 / 269
页数:5
相关论文
共 28 条
[1]  
ADELMAN LM, 1994, LECT NOTES COMPUTER, V877
[2]   ON DISTINGUISHING PRIME-NUMBERS FROM COMPOSITE NUMBERS [J].
ADLEMAN, LM ;
POMERANCE, C ;
RUMELY, RS .
ANNALS OF MATHEMATICS, 1983, 117 (01) :173-206
[3]   ELLIPTIC-CURVES AND PRIMALITY PROVING [J].
ATKIN, AOL ;
MORAIN, F .
MATHEMATICS OF COMPUTATION, 1993, 61 (203) :29-68
[4]   Density of Carmichael numbers with three prime factors [J].
Balasubramanian, R ;
Nagaraj, SV .
MATHEMATICS OF COMPUTATION, 1997, 66 (220) :1705-1708
[5]  
BRENT RP, 1981, MATH COMPUT, V36, P627, DOI 10.1090/S0025-5718-1981-0606520-5
[6]  
Chernick J., 1939, B AM MATH SOC, V45, P269, DOI 10.1090/S0002-9904-1939-06953-X
[7]   AVERAGE-CASE ERROR-ESTIMATES FOR THE STRONG PROBABLE PRIME TEST [J].
DAMGARD, I ;
LANDROCK, P ;
POMERANCE, C .
MATHEMATICS OF COMPUTATION, 1993, 61 (203) :177-194
[8]  
DAMGARD I, 1991, IMA C SERIES, V45, P117
[9]   Computing pi(x): The Meissel, Lehmer, Lagarias, Miller, Odlyzko method [J].
Deleglise, M ;
Rivat, J .
MATHEMATICS OF COMPUTATION, 1996, 65 (213) :235-245
[10]  
DELEGLISE M, 1994, P 1 INT S ITH NY MAY, P264