The hyperspace of a compact space .1

被引:4
作者
Bell, M [1 ]
机构
[1] UNIV MANITOBA,DEPT MATH,WINNIPEG,MB R3T 2N2,CANADA
关键词
hyperspace; compact; monolithic; d-separable; pi-base;
D O I
10.1016/0166-8641(96)00012-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the properties monolithic and d-separable for the hyperspace H(X) of all nonempty closed subsets of a compact Hausdorff space X. A. Arhangelskii has asked whether H(X) monolithic is equivalent to X metrizable. We answer this with: Let X be a compact orderable space. Then H(X) is monolithic iff X is monolithic and hereditarily Lindelof. So, a Suslin continuum has a monolithic hyperspace. In contrast, MA(omega(1)) implies that for any compact Hausdorff space X, H(X) is monolithic iff X is metrizable. We prove that H(X) is always d-separable. A special case of this yields that every locally compact Hausdorff space X has a discrete (in H(X)) pi-net.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 11 条
[1]  
AMIRDHZHANOV G, 1977, SOV MATH DOKL, V18, P789
[2]  
[Anonymous], C R ACAD SCI
[3]  
Arhangel'skii A.V., 1977, SOV MATH DOKL, V232, p[989, 165]
[4]  
ARHANGELSKII AV, 1987, RUSS MATH SURV, V42, P83
[5]  
Arkhangelskii A. V., 1976, Russian Math. Surveys, V31, P14
[6]  
BALCAR B, 1980, FUND MATH, V60, P11
[7]  
HODEL R, 1984, HDB SET THEORETIC TO, P1, DOI DOI 10.1016/B978-0-444-86580-9.50004-5
[8]  
JUHASZ I, 1979, MATH CTR TRACTS, V34
[9]   A COMPACT L-SPACE UNDER CH [J].
KUNEN, K .
TOPOLOGY AND ITS APPLICATIONS, 1981, 12 (03) :283-287
[10]  
Kuratowski K., 1968, TOPOLOGY, V1