Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes

被引:714
作者
Huang, Hubiao [1 ]
Song, Zhigong [2 ,3 ]
Wei, Ning [2 ,3 ]
Shi, Li [1 ]
Mao, Yiyin [1 ]
Ying, Yulong [1 ]
Sun, Luwei [1 ]
Xu, Zhiping [2 ,3 ]
Peng, Xinsheng [1 ]
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310028, Zhejiang, Peoples R China
[2] Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China
关键词
MOLECULAR-DYNAMICS SIMULATIONS; CARBON NANOTUBES; TRANSPORT; SEPARATION; COMPACTION; PERMEATION;
D O I
10.1038/ncomms3979
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3-5 nm) and superior separation performance. This permeance offers a 10-fold enhancement without sacrificing the rejection rate compared with that of graphene oxide membranes, and is more than 100 times higher than that of commercial ultrafiltration membranes with similar rejection. The flow enhancement is attributed to the porous structure and significantly reduced channel length. An abnormal pressure-dependent separation behaviour is also reported, where the elastic deformation of nanochannels offers tunable permeation and rejection. The water flow through these hydrophilic graphene oxide nanochannels is identified as viscous. This nanostrand-channelling approach is also extendable to other laminate membranes, providing potential for accelerating separation and water-purification processes.
引用
收藏
页数:9
相关论文
共 51 条
[1]   A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent [J].
Ai, Kelong ;
Liu, Yanlan ;
Lu, Lehui ;
Cheng, Xiaoli ;
Huo, Lihua .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (10) :3365-3370
[2]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[3]   ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J].
Chenoweth, Kimberly ;
van Duin, Adri C. T. ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (05) :1040-1053
[4]   Covalent chemistry on graphene [J].
Chua, Chun Kiang ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (08) :3222-3233
[5]   Water Desalination across Nanoporous Graphene [J].
Cohen-Tanugi, David ;
Grossman, Jeffrey C. .
NANO LETTERS, 2012, 12 (07) :3602-3608
[6]   Boundary conditions for molecular dynamics simulations of water transport through nanotubes [J].
Docherty, Stephanie Y. ;
Nicholls, William D. ;
Borg, Matthew K. ;
Lockerby, Duncan A. ;
Reese, Jason M. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2014, 228 (01) :186-195
[7]   Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes [J].
Ebert, K ;
Fritsch, D ;
Koll, J ;
Tjahjawiguna, C .
JOURNAL OF MEMBRANE SCIENCE, 2004, 233 (1-2) :71-78
[8]   Molecular Origin of Fast Water Transport in Carbon Nanotube Membranes: Superlubricity versus Curvature Dependent Friction [J].
Falk, Kerstin ;
Sedlmeier, Felix ;
Joly, Laurent ;
Netz, Roland R. ;
Bocquet, Lyderic .
NANO LETTERS, 2010, 10 (10) :4067-4073
[9]   Graphene as a subnanometre trans-electrode membrane [J].
Garaj, S. ;
Hubbard, W. ;
Reina, A. ;
Kong, J. ;
Branton, D. ;
Golovchenko, J. A. .
NATURE, 2010, 467 (7312) :190-U73
[10]   Designing the Next Generation of Chemical Separation Membranes [J].
Gin, Douglas L. ;
Noble, Richard D. .
SCIENCE, 2011, 332 (6030) :674-676