Diffusion of Lithium Ions in Amorphous and Crystalline Poly(ethylene oxide)3:LiCF3SO3 Polymer Electrolytes

被引:36
作者
Xue, Sha [1 ]
Liu, Yingdi [2 ]
Li, Yaping [2 ]
Teeters, Dale [3 ,5 ]
Crunkleton, Daniel W. [1 ,4 ,5 ]
Wang, Sanwu [2 ,4 ,5 ]
机构
[1] Univ Tulsa, Russell Sch Chem Engn, Tulsa, OK 74104 USA
[2] Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA
[3] Univ Tulsa, Dept Chem & Biochem, Tulsa, OK 74104 USA
[4] Univ Tulsa, Tulsa Inst Alternat Energy, Tulsa, OK 74104 USA
[5] Univ Tulsa, Tulsa Inst Nanotechnol, Tulsa, OK 74104 USA
关键词
Polymer electrolytes; Ionic conductivity; Ab initio calculations; Activation energy; Diffusion pathway; TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS SIMULATION; AB-INITIO CALCULATIONS; ELASTIC BAND METHOD; CONDUCTION MECHANISMS; TRANSPORT; PEO; COMPLEXES; CLUSTERS; CATION;
D O I
10.1016/j.electacta.2017.03.083
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The PEO3:LiCF3SO3 polymer electrolyte has attracted significant research due to high conductivity and enhanced stability in lithium polymer batteries. Most experimental studies have shown that amorphous PEO lithium salt electrolytes have higher conductivity than the crystalline ones. Other studies, however, have shown that crystalline PEO salt complexes can conduct ions. As a result, further theoretical investigations are warranted to help clarify the issue. In this work, we use density functional theory with the climbing image nudged elastic band method to investigate the atomic-scale mechanism of lithium ion transport in the polymer electrolytes. We also use density functional theory and ab initio molecular dynamics simulations to obtain the amorphous structure of PEO3:LiCF3SO3. The diffusion pathways and activation energies of lithium ions in both crystalline and amorphous PEO3:LiCF3SO3 are determined. In crystalline PEO3:LiCF3SO3, the activation energy for the low-barrier diffusion pathway is approximately 1.0 eV. In the amorphous phase, the value is 0.6 eV. This result would support the experimental observation that amorphous PEO3:LiCF3SO3 has higher ionic conductivity than the crystalline phase. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:122 / 128
页数:7
相关论文
共 52 条
  • [21] Elementary steps of lithium ion transport in PEO via quantum mechanical calculations
    Johansson, P
    Tegenfeldt, J
    Lindgren, J
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (24) : 4660 - 4665
  • [22] An ab initio approach to the single ion transport in crystalline LiIPF6PEO6
    Johansson, P
    Jacobsson, P
    [J]. ELECTROCHIMICA ACTA, 2003, 48 (14-16) : 2279 - 2281
  • [23] Modelling lithium ion transport in helical PEO by ab initio calculations
    Johansson, P
    Tegenfeldt, J
    Lindgren, J
    [J]. POLYMER, 2001, 42 (15) : 6573 - 6577
  • [24] Modelling amorphous lithium salt-PEO polymer electrolytes: ab initio calculations of lithium ion-tetra-, penta- and hexaglyme complexes
    Johansson, P
    Tegenfeldt, J
    Lindgren, J
    [J]. POLYMER, 1999, 40 (15) : 4399 - 4406
  • [25] Structure and ionic conductivity of ionic liquid embedded PEO- LiCF3SO3 polymer electrolyte
    Karmakar, A.
    Ghosh, A.
    [J]. AIP ADVANCES, 2014, 4 (08)
  • [26] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11169 - 11186
  • [27] ABINITIO MOLECULAR-DYNAMICS FOR LIQUID-METALS
    KRESSE, G
    HAFNER, J
    [J]. PHYSICAL REVIEW B, 1993, 47 (01): : 558 - 561
  • [28] From ultrasoft pseudopotentials to the projector augmented-wave method
    Kresse, G
    Joubert, D
    [J]. PHYSICAL REVIEW B, 1999, 59 (03): : 1758 - 1775
  • [29] Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) : 15 - 50
  • [30] Hydrogenation of o-cresol on platinum catalyst: Catalytic experiments and first-principles calculations
    Li, Yaping
    Liu, Zhimin
    Xue, Wenhua
    Crossley, Steven P.
    Jentoft, Friederike C.
    Wang, Sanwu
    [J]. APPLIED SURFACE SCIENCE, 2017, 393 : 212 - 220