Quantum hardware simulating four-dimensional inelastic neutron scattering

被引:102
作者
Chiesa, A. [1 ]
Tacchino, F. [2 ]
Grossi, M. [2 ,3 ]
Santini, P. [1 ]
Tavernelli, I. [4 ]
Gerace, D. [2 ]
Carretta, S. [1 ]
机构
[1] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Parma, Italy
[2] Univ Pavia, Dipartimento Fis, Pavia, Italy
[3] IBM Italia Spa, Circonvallaz Idroscalo, Segrate, Italy
[4] IBM Res, Zurich Res Lab, Zurich, Switzerland
关键词
SPIN; ENTANGLEMENT; DYNAMICS; QUBITS; STATE;
D O I
10.1038/s41567-019-0437-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magnetic molecules, modelled as finite-size spin systems, are test-beds for quantum phenomena(1) and could constitute key elements in future spintronics devices(2-5), long-lasting nanoscale memories(6 )or noise-resilient quantum computing platforms(7-10). Inelastic neutron scattering is the technique of choice to probe them, characterizing molecular eigenstates on atomic scales(11-14). However, although large magnetic molecules can be controllably synthesized(15-18), simulating their dynamics and interpreting spectroscopic measurements is challenging because of the exponential scaling of the required resources on a classical computer. Here, we show that quantum computers(19-22) have the potential to efficiently extract dynamical correlations and the associated magnetic neutron cross-section by simulating prototypical spin systems on a quantum hardware(22). We identify the main gate errors and show the potential scalability of our approach. The synergy between developments in neutron scattering and quantum processors will help design spin clusters for future applications.
引用
收藏
页码:455 / +
页数:7
相关论文
共 33 条
[1]  
Baker ML, 2012, NAT PHYS, V8, P906, DOI [10.1038/NPHYS2431, 10.1038/nphys2431]
[2]   High spin cycles: topping the spin record for a single molecule verging on quantum criticality [J].
Baniodeh, Amer ;
Magnani, Nicola ;
Lan, Yanhua ;
Buth, Gernot ;
Anson, Christopher E. ;
Richter, Johannes ;
Affronte, Marco ;
Schnack, Juergen ;
Powell, Annie K. .
NPJ QUANTUM MATERIALS, 2018, 3
[3]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[4]  
Cervetti C, 2016, NAT MATER, V15, P164, DOI [10.1038/NMAT4490, 10.1038/nmat4490]
[5]   Magnetic Exchange Interactions in the Molecular Nanomagnet Mn12 [J].
Chiesa, A. ;
Guidi, T. ;
Carretta, S. ;
Ansbro, S. ;
Timco, G. A. ;
Vitorica-Yrezabal, I. ;
Garlatti, E. ;
Amoretti, G. ;
Winpenny, R. E. P. ;
Santini, P. .
PHYSICAL REVIEW LETTERS, 2017, 119 (21)
[6]   Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits [J].
Chiesa, Alessandro ;
Santini, Paolo ;
Gerace, Dario ;
Raftery, James ;
Houck, Andrew A. ;
Carretta, Stefano .
SCIENTIFIC REPORTS, 2015, 5
[7]   Demonstration of a quantum error detection code using a square lattice of four superconducting qubits [J].
Corcoles, A. D. ;
Magesan, Easwar ;
Srinivasan, Srikanth J. ;
Cross, Andrew W. ;
Steffen, M. ;
Gambetta, Jay M. ;
Chow, Jerry M. .
NATURE COMMUNICATIONS, 2015, 6
[8]   SYNTHESIS AND GEOMETRY DETERMINATION OF COFACIAL DIPORPHYRINS - ELECTRON-PARAMAGNETIC-RES SPECTROSCOPY OF DICOPPER DIPORPHYRINS IN FROZEN SOLUTION [J].
EATON, SS ;
EATON, GR ;
CHANG, CK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (11) :3177-3184
[9]   A modular design of molecular qubits to implement universal quantum gates [J].
Ferrando-Soria, Jesus ;
Pineda, Eufemio Moreno ;
Chiesa, Alessandro ;
Fernandez, Antonio ;
Magee, Samantha A. ;
Carretta, Stefano ;
Santini, Paolo ;
Vitorica-Yrezabal, Inigo J. ;
Tuna, Floriana ;
Timco, Grigore A. ;
McInnes, Eric J. L. ;
Winpenny, Richard E. P. .
NATURE COMMUNICATIONS, 2016, 7
[10]   Building logical qubits in a superconducting quantum computing system [J].
Gambetta, Jay M. ;
Chow, Jerry M. ;
Steffen, Matthias .
NPJ QUANTUM INFORMATION, 2017, 3