Discrete-Continuum Transition in Modelling Nanomaterials

被引:2
|
作者
Pyrz, Ryszard [1 ]
Bochenek, Bogdan [2 ]
机构
[1] Aalborg Univ, Dept Mech Engn, Pontoppidanstr 101, DK-9220 Aalborg, Denmark
[2] Cracow Univ Technol, Inst Appl Mech, PL-31864 Krakow, Poland
来源
IUTAM SYMPOSIUM ON MODELLING NANOMATERIALS AND NANOSYSTEMS | 2009年 / 13卷
关键词
STRESS; SOLIDS; DYNAMICS; SIMULATIONS; ELASTICITY; DERIVATION; FORMULAS; LEVEL;
D O I
10.1007/978-1-4020-9557-3_8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the present investigation we elaborate on the development of a second-order elastic deformation gradient in discrete/atomistic system. Whereas kinematics are typically characterized by the Cauchy-Bom rule that enforces homogeneous deformation, the second-order deformation gradient allows to capture highly nonhomogeneous deformations. This is particularly important in disordered molecular systems where nonaffine deformations are responsible for the mechanical behaviour of nanomaterials. The local inhomogeneity measure has been defined to determine variability of the deformation field of nanostructures under loading. Several application examples have been worked out comprising fullerene structures, diamond plates and nanowires.
引用
收藏
页码:63 / +
页数:3
相关论文
共 50 条
  • [31] Comparing a discrete and continuum model of the intestinal crypt
    Murray, Philip J.
    Walter, Alex
    Fletcher, Alexander G.
    Edwards, Carina M.
    Tindall, Marcus J.
    Maini, Philip K.
    PHYSICAL BIOLOGY, 2011, 8 (02)
  • [32] Mobility of lattice defects: discrete and continuum approaches
    Kresse, O
    Truskinovsky, L
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2003, 51 (07) : 1305 - 1332
  • [33] A DISCRETE TO CONTINUUM ANALYSIS OF DISLOCATIONS IN NANOWIRE HETEROSTRUCTURES
    Lazzaroni, Giuliano
    Palombaro, Mariapia
    Schloemerkemper, Anja
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1105 - 1133
  • [34] Molecular-continuum model for the prediction of stiffness, strength and toughness of nanomaterials
    Yeh, Yu-Kuei
    Hwu, Chyanbin
    ACTA MECHANICA, 2019, 230 (04) : 1451 - 1467
  • [35] Pair distribution function analysis of discrete nanomaterials in PDFgui
    Chen, Zhihengyu
    Beauvais, Michelle L.
    Chapman, Karena W.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2023, 56 : 328 - 337
  • [36] Coupling discrete and continuum concentration particle for multiscale and hybrid molecular-continuum simulations
    Petsev, Nikolai D.
    Leal, L. Gary
    Shell, M. Scott
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (23)
  • [37] On the failure of a discrete axial chain using a continualized nonlocal Continuum Damage Mechanics approach
    Picandet, Vincent
    Herisson, Benjamin
    Challamel, Noel
    Perrot, Arnaud
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2016, 40 (03) : 436 - 466
  • [38] Size and disorder effects in elasticity of cellular structures: From discrete models to continuum representations
    Liebenstein, Stefan
    Sandfeld, Stefan
    Zaiser, Michael
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2018, 146 : 97 - 116
  • [39] Continuum modelling for adhesion between paint surfaces
    Sarapat, Pakhapoom
    Thamwattana, Ngamta
    Baowan, Duangkamon
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2016, 70 : 234 - 238
  • [40] Modelling the continuum of macrophage phenotypes and their role in inflammation
    Almansour, Suliman
    Dunster, Joanne L.
    Crofts, Jonathan J.
    Nelson, Martin R.
    MATHEMATICAL BIOSCIENCES, 2024, 377